| [1] |
李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84.
|
|
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. (in Chinese)
|
| [2] |
STOKSTAD E. Jury verdicts cloud future of popular herbicide. Science, 2019, 364(6442): 717-718.
|
| [3] |
强胜. 中国杂草生物学研究的新进展. 杂草学报, 2018, 36(2): 1-9.
|
|
QIANG S. New progresses on studies of weed biology in China. Journal of Weed Science, 2018, 36(2): 1-9. (in Chinese)
|
| [4] |
DUKE S O, DAYAN F E. The search for new herbicide mechanisms of action: Is there a ‘holy grail’? Pest Management Science, 2022, 78(4): 1303-1313.
|
| [5] |
邵旭升, 杜少卿, 李忠, 钱旭红. 中国绿色农药的研究和发展. 世界农药, 2020, 42(4): 16-24.
|
|
SHAO X S, DU S Q, LI Z, QIAN X H. Research and development of green pesticides in China. World Pesticides, 2020, 42(4): 16-24. (in Chinese)
|
| [6] |
TAKANO H K, DAYAN F E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Management Science, 2020, 76(12): 3911-3925.
|
| [7] |
刘璐, 朱哲远, 李颖曦, 王颉, 彭迪. 微生物除草剂的研究进展. 生物技术通报, 2024, 40(9): 161-171.
|
|
LIU L, ZHU Z Y, LI Y X, WANG J, PENG D. Research progress in microbial herbicides. Biotechnology Bulletin, 2024, 40(9): 161-171. (in Chinese)
|
| [8] |
CIMMINO A, MASI M, EVIDENTE M, SUPERCHI S, EVIDENTE A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Natural Product Reports, 2015, 32(12): 1629-1653.
|
| [9] |
SPARKS T C, DUKE S O. Structure simplification of natural products as a lead generation approach in agrochemical discovery. Journal of Agricultural and Food Chemistry, 2021, 69(30): 8324-8346.
|
| [10] |
VURRO M, BOARI A, CASELLA F, ZONNO M C. Fungal phytotoxins in sustainable weed management. Current Medicinal Chemistry, 2018, 25(2): 268-286.
|
| [11] |
ZHAO M, TANG Y, XIE J, ZHAO Z, CUI H. Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. European Journal of Medicinal Chemistry, 2021, 209: 112860.
|
| [12] |
BARRA L, ABE I. Chemistry of fungal meroterpenoid cyclases. Natural Product Reports, 2021, 38(3): 566-585.
|
| [13] |
QI B, LIU X, MO T, ZHU Z, LI J, WANG J, SHI X, ZENG K, WANG X, TU P, ABE I, SHI S. 3,5-Dimethylorsellinic acid derived meroterpenoids from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Journal of Natural Products, 2017, 80(10): 2699-2707.
|
| [14] |
VALIANTE V, MATTERN D J, SCHUFFLER A, HORN F, WALTHER G, SCHERLACH K, PETZKE L, DICKHAUT J, GUTHKE R, HERTWECK C, NETT M, THINES E, BRAKHAGE A A. Discovery of an extended austinoid biosynthetic pathway in Aspergillus calidoustus. ACS Chemical Biology, 2017, 12(5): 1227-1234.
|
| [15] |
WANG W, WANG M, WANG X B, LI Y Q, DING J L, LAN M X, GAO X, ZHAO D L, ZHANG C S, WU G X. Phytotoxic azaphilones from the mangrove-derived fungus Penicillium sclerotiorum HY5. Frontiers in Microbiology, 2022, 13: 880874.
|
| [16] |
HUANG X R, JIANG C N, WANG H S, GU G, WANG M, SUI X N, SI T, ZHANG Z F, ZHANG P, ZHAO D L. Herbicidal sorbicillinoid analogs cause lignin accumulation in Aspergillus aculeatus TE- 65L. Journal of Agricultural and Food Chemistry, 2024, 72(38): 21102-21111.
|
| [17] |
代义乐, 陈可可, 刘东丽, 蔡加岭, 吴越, 张辉, 张继. 链霉菌YJ-81中活性成分的分离、鉴定及除草活性. 农药学学报, 2023, 25(5): 1104-1112.
|
|
DAI Y L, CHEN K K, LIU D L, CAI J L, WU Y, ZHANG H, ZHANG J. Isolation and characterization of a herbicidal component produced by Streptomyces sp. YJ-81. Chinese Journal of Pesticide Science, 2023, 25(5): 1104-1112. (in Chinese)
|
| [18] |
REN Y, YU G, SHI C, LIU L, GUO Q, HAN C, ZHANG D, ZHANG L, LIU B, GAO H, et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta, 2022, 1(2): e12.
|
| [19] |
CHEN J C, HUANG H J, WEI S H, HUANG Z F, WANG X, ZHANG C X. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. The Plant Journal, 2017, 89(2): 407-415.
|
| [20] |
STIERLE D B, STIERLE A A, HOBBS J D, STOKKEN J, CLARDY J. Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Organic Letters, 2004, 6(6): 1049-1052.
|
| [21] |
LO H C, ENTWISTLE R, GUO C J, AHUJA M, SZEWCZYK E, HUNG J H, CHIANG Y M, OAKLEY B R, WANG C C C. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. Journal of the American Chemical Society, 2012, 134(10): 4709-4720.
|
| [22] |
IIDA M, OOI T, KITO K, YOSHIDA S, KANOH K, SHIZURI Y, KUSUMI T. Three new polyketide-terpenoid hybrids from Penicillium sp. Organic Letters, 2008, 10(5): 845-848.
|
| [23] |
HOANG T P T, ROULLIER C, BOUMARD M C, DU PONT T R, NAZIH H, GALLARD J F, POUCHUS Y F, BENIDDIR M A, GROVEL O. Metabolomics-driven discovery of meroterpenoids from a mussel-derived Penicillium ubiquetum. Journal of Natural Products, 2018, 81(11): 2501-2511.
|
| [24] |
LI J, YANG X, LIN Y Y, YUAN J, LU Y J, ZHU X, LI J, LI M F, LIN Y C, HE J G, LIU L. Meroterpenes and azaphilones from marine mangrove endophytic fungus Penicillium 303#. Fitoterapia, 2014, 97: 241-246.
|
| [25] |
FENG Q M, YU Y, TANG M X, ZHANG T Y, ZHANG M Y, WANG H F, HAN Y Q, ZHANG Y X, CHEN G, PEI Y H. Four new hybrid polyketide-terpenoid metabolites from the Penicillium sp. SYPF 7381 in the rhizosphere soil of Pulsatilla chinensis. Fitoterapia, 2018, 125: 249-257.
|
| [26] |
MATSUDA Y, AWAKAWA T, WAKIMOTO T, ABE I. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. Journal of the American Chemical Society, 2013, 135(30): 10962-10965.
|
| [27] |
STIERLE D B, STIERLE A A, PATACINI B. The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. Journal of Natural Products, 2007, 70(11): 1820-1823.
|
| [28] |
时杰, 余玥, 刘冰, 李文兰. 真菌来源杂萜类化合物的研究进展. 中国药学杂志, 2024, 59(6): 476-485.
|
|
SHI J, YU Y, LIU B, LI W L. Research progress of meroterpenoids produced by fungi. Chinese Pharmaceutical Journal, 2024, 59(6): 476-485. (in Chinese)
|
| [29] |
韩海燕. 大型真菌中含苔色酸核心骨架杂萜类化合物的生物合成研究[D]. 哈尔滨: 东北林业大学, 2024.
|
|
HAN H Y. Biosynthesis of meroterpenoids containing an orsellinic acid backbone in macrofungi[D]. Harbin: Northeast Forestry University, 2024. (in Chinese)
|
| [30] |
龙涛. 一类DMOA衍生杂萜核心骨架的合成[D]. 贵阳: 贵州大学, 2024.
|
|
LONG T. Synthesis of a class of DMOA-derived hybrid terpenoid core skeletons[D]. Guiyang: Guizhou University, 2024. (in Chinese)
|
| [31] |
GAN D, LIU J Q, YANG Y J, WANG C Y, ZHU L, LI C Z, CAI L, DING Z T. Phytotoxic meroterpenoids with herbicidal activities from the phytopathogenic fungus Pseudopestalotiopsis theae. Phytochemistry, 2023, 206: 113522.
|
| [32] |
DARMA R, SHANG Z, BRACEGIRDLE J, MOGGACH S, MCDONALD M C, PIGGOTT A M, SOLOMON P S, CHOOI Y H. Transcriptomics-driven discovery of new meroterpenoid rhynchospenes involved in the virulence of the barley pathogen Rhynchosporium commune. ACS Chemical Biology, 2025, 20(2): 421-431.
|
| [33] |
HUANG Z H, LIANG X, LI C J, GU Q, MA X, QI S H. Talaromynoids A-I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. Journal of Natural Products, 2021, 84(10): 2727-2737.
|
| [34] |
WU Y Z, XIA G Y, XIA H, WANG L Y, WANG Y N, LI L, SHANG H C, LIN S. Seco and nor-seco isodhilarane-type meroterpenoids from Penicillium purpurogenum and the configuration revisions of related compounds. Journal of Natural Products, 2022, 85(1): 248-255.
|
| [35] |
WANG X D, LI N, ZAN T X, XU K, GAO S H, YIN Y X, YAO M H, WANG F. Genome-wide analysis of the TIFY family and function of CaTIFY7 and CaTIFY10b under cold stress in pepper (Capsicum annuum L.). Frontiers in Plant Science, 2023, 14: 1308721.
|
| [36] |
PAN J J, HU Y R, WANG H P, GUO Q, CHEN Y N, HOWE G A, YU D Q. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell, 2020, 32(12): 3846-3865.
|
| [37] |
PELAGIO-FLORES R, ORTIZ-CASTRO R, MENDEZ-BRAVO A, MACIAS-RODRIGUEZ L, LOPEZ-BUCIO J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52(3): 490-508.
|
| [38] |
WAN J P, ZHANG P, SUN L L, LI S, WANG R L, ZHOU H K, WANG W Y, XU J. Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation. Journal of Plant Physiology, 2018, 229: 89-99.
|
| [39] |
PAN J J, WANG H P, YOU Q G, CAO R, SUN G L, YU D Q. Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany, 2023, 74(4): 1162-1175.
|