[1] |
MENG F, CHEN Y, SONG Z C, ZHONG Q, ZHANG Y J, QIAO C L, YAN C, KONG H H, LIU L L, LI C J, YANG H L, CHEN H L. Continued evolution of the Eurasian avian-like H1N1 swine influenza viruses in China. Science China Life Sciences, 2023, 66(2): 269-282.
|
[2] |
ZHAO Y Z, HAN L B, SANG H T, LIU S D, YANG P P, HOU Y M, XIAO Y H. Swine influenza viruses isolated from 2019 to 2022 in Shandong Province, China, exemplify the dominant genotype. Genes, 2024, 15(7): 849.
|
[3] |
CUI X X, MA J H, PANG Z F, CHI L Z, MAI C S, LIU H L, LIAO M, SUN H L. The evolution, pathogenicity and transmissibility of quadruple reassortant H1N2 swine influenza virus in China: A potential threat to public health. Virologica Sinica, 2024, 39(2): 205-217.
doi: 10.1016/j.virs.2024.02.002
pmid: 38346538
|
[4] |
SUN H L, XIAO Y H, LIU J Y, WANG D Y, LI F T, WANG C X, LI C, ZHU J D, SONG J W, SUN H R, et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17204-17210.
|
[5] |
LI C, MELIOPOULOS V, RENDAHL A, SCHULTZ-CHERRY S, TORREMORELL M. Naturally occurring influenza reassortment in pigs facilitates the emergence of intrahost virus subpopulations with distinct genotypes and replicative fitness. mBio, 2025, 16(1): e01924-24.
|
[6] |
STORMS S M, LEONARDI-CATTOLICA A, PREZIOSO T, VARGA C, WANG L Y, LOWE J. Influenza A virus shedding and reinfection during the post-weaning period in swine: Longitudinal study of two nurseries. Frontiers in Veterinary Science, 2024, 11: 1482225.
|
[7] |
CHOI E J, LEE Y J, LEE J M, KIM Y J, CHOI J H, AHN B, KIM K, HAN M G. The effect of mutations derived from mouse-adapted H3N2 seasonal influenza A virus to pathogenicity and host adaptation. PLoS ONE, 2020, 15(1): e0227516.
|
[8] |
URBANIAK K, KOWALCZYK A, POMORSKA-MÓL M, KWIT K, MARKOWSKA-DANIEL I. Effect of serial in vivo passages on the adaptation of H1N1 avian influenza virus to pigs. Journal of Veterinary Research, 2022, 66(1): 9-19.
|
[9] |
ZHU M, HE J Q, ZENG H, WANG P P, ZHU Y H, SUN F Y, HUANG X, XU Y, HUANG C Q, CHEN J C, et al. Synergistic HA and NS mutations enhanced the virulence of a mouse-adapted H1N1 influenza A virus. Veterinary Microbiology, 2023, 276: 109615.
|
[10] |
LIU L L, WANG F J, WU Y, MI W Y, ZHANG Y P, CHEN L, WANG D X, DENG G H, SHI J Z, CHEN H L, KONG H H. The V223I substitution in hemagglutinin reduces the binding affinity to human-type receptors while enhancing the thermal stability of the H3N2 canine influenza virus. Frontiers in Microbiology, 2024, 15: 1442163.
|
[11] |
LIU K T, GUO Y Q, ZHENG H F, JI Z X, CAI M, GAO R Y, ZHANG P H, LIU X W, XU X L, WANG X Q, LIU X F. Enhanced pathogenicity and transmissibility of H9N2 avian influenza virus in mammals by hemagglutinin mutations combined with PB2-627K. Virologica Sinica, 2023, 38(1): 47-55.
|
[12] |
GILBERTSON B, SUBBARAO K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. Journal of Experimental Medicine, 2023, 220(8): e20230447.
|
[13] |
CHAN M, LEUNG A, HISANAGA T, PICKERING B, GRIFFIN B D, VENDRAMELLI R, TAILOR N, WONG G, BI Y H, BABIUK S, BERHANE Y, KOBASA D. H7N9 influenza virus containing a polybasic HA cleavage site requires minimal host adaptation to obtain a highly pathogenic disease phenotype in mice. Viruses, 2020, 12(1): 65.
|
[14] |
MENG F, YANG H L, QU Z Y, CHEN Y, ZHANG Y J, ZHANG Y P, LIU L L, ZENG X Y, LI C J, KAWAOKA Y, CHEN H L. A Eurasian avian-like H1N1 swine influenza reassortant virus became pathogenic and highly transmissible due to mutations in its PA gene. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2203919119.
|
[15] |
ZHU W F, FENG Z M, CHEN Y K, YANG L, LIU J, LI X Y, LIU S L, ZHOU L J, WEI H J, GAO R B, WANG D Y, SHU Y L. Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine Influenza viruses determines the virulence phenotype in mice. Emerging Microbes & Infections, 2019, 8(1): 989-999.
|
[16] |
CARDENAS M, SEIBERT B, COWAN B, CACERES C J, GAY L C, CARGNIN FACCIN F, PEREZ D R, BAKER A L, ANDERSON T K, RAJAO D S. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Communications Biology, 2024, 7: 1230.
doi: 10.1038/s42003-024-06928-6
pmid: 39354058
|
[17] |
CAI M K, ZHONG R T, QIN C X, YU Z Q, WEN X Y, XIAN J S, CHEN Y J, CAI Y, YI H Y, GONG L, ZHANG G H. The R251K substitution in viral protein PB2 increases viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses. Viruses, 2020, 12(1): 52.
|
[18] |
XU C Z, XU B F, WU Y P, YANG S M, JIA Y H, LIANG W H, YANG D W, HE L K, ZHU W F, CHEN Y, et al. A single amino acid at position 431 of the PB 2 protein determines the virulence of H1N1 swine influenza viruses in mice. Journal of Virology, 2020, 94(8): e01930-19.
|
[19] |
ZHAO Z Z, YI C Y, ZHAO L Z, WANG S Y, ZHOU L S, HU Y, ZOU W, CHEN H C, JIN M L. PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. Journal of Virology, 2014, 88(4): 2260-2267.
|
[20] |
LUO W Y, ZHANG J, LIANG L B, WANG G W, LI Q B, ZHU P Y, ZHOU Y, LI J P, ZHAO Y H, SUN N, et al. Correction: Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathogens, 2024, 20(2): e1012035.
|
[21] |
WANG X Y, JIANG L, WANG G W, SHI W J, HU Y Z, WANG B, ZENG X Y, TIAN G B, DENG G H, SHI J Z, et al. Influenza A virus use of BinCARD1 to facilitate the binding of viral NP to importin α7 is counteracted by TBK1-p62 axis-mediated autophagy. Cellular & Molecular Immunology, 2022, 19(10): 1168-1184.
|
[22] |
PFLUG A, LUKARSKA M, RESA-INFANTE P, REICH S, CUSACK S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Research, 2017, 234: 103-117.
doi: S0168-1702(16)30782-1
pmid: 28115197
|
[23] |
ARRAGAIN B, KRISCHUNS T, PELOSSE M, DRNCOVA P, BLACKLEDGE M, NAFFAKH N, CUSACK S. Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase. Nature Communications, 2024, 15: 6910.
doi: 10.1038/s41467-024-51007-3
pmid: 39160148
|
[24] |
AREA E, MARTÍN-BENITO J, GASTAMINZA P, TORREIRA E, VALPUESTA J M, CARRASCOSA J L, ORTÍN J. 3D structure of the influenza virus polymerase complex:Localization of subunit domains. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(1): 308-313.
|
[25] |
ENGELHARDT O G, FODOR E. Functional association between viral and cellular transcription during influenza virus infection. Reviews in Medical Virology, 2006, 16(5): 329-345.
doi: 10.1002/rmv.512
pmid: 16933365
|
[26] |
YANG J, LIU S W, DU L Y, JIANG S B. A new role of neuraminidase (NA) in the influenza virus life cycle: implication for developing NA inhibitors with novel mechanism of action. Reviews in Medical Virology, 2016, 26(4): 242-250.
doi: 10.1002/rmv.1879
pmid: 27061123
|
[27] |
SCHEIBNER D, SALAHELDIN A H, BAGATO O, ZAECK L M, MOSTAFA A, BLOHM U, MÜLLER C, EWEAS A F, FRANZKE K, KARGER A, et al. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathogens, 2023, 19(2): e1011135.
|
[28] |
HUANG X Y, YIN G H, ZHOU B, CAI Y Q, HU J N, HUANG J W, CHEN Z L, LIU Q T, FENG X L. KRT 10 plays an important role in the release of viral genome from endosomes during H9N2 subtype AIV replication in HeLa cells. Veterinary Microbiology, 2023, 284: 109824.
|
[29] |
ZHANG B, LIU M X, HUANG J X, ZENG Q Y, ZHU Q Y, XU S, CHEN H L. H1N1 influenza A virus protein NS2 inhibits innate immune response by targeting IRF7. Viruses, 2022, 14(11): 2411.
|
[30] |
HU Y, LIU X K, ZHANG A D, ZHOU H B, LIU Z D, CHEN H C, JIN M L. CHD 3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cellular and Molecular Life Sciences, 2015, 72(5): 971-982.
|
[31] |
ZHANG L, SHAO Y K, WANG Y Y, YANG Q X, GUO J M, GAO G F, DENG T. Twenty natural amino acid substitution screening at the last residue 121 of influenza A virus NS2 protein reveals the critical role of NS2 in promoting virus genome replication by coordinating with viral polymerase. Journal of Virology, 2024, 98(1): e01166-23.
|
[32] |
KANG M, WANG L F, SUN B W, WAN W B, JI X, BAELE G, BI Y H, SUCHARD M A, LAI A, ZHANG M, et al. Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. The Lancet Infectious Diseases, 2024, 24(8): e522-e531.
|
[33] |
NAKAMURA K, HARADA Y, TAKAHASHI H, TRUSHEIM H, BERNHARD R, HAMAMOTO I, HIRATA-SAITO A, OGANE T, MIZUTA K, KONOMI N, et al. Systematic evaluation of suspension MDCK cells, adherent MDCK cells, and LLC-MK 2 cells for preparing influenza vaccine seed virus. Vaccine, 2019, 37(43): 6526-6534.
|