中国农业科学 ›› 2021, Vol. 54 ›› Issue (24): 5316-5326.doi: 10.3864/j.issn.0578-1752.2021.24.013
• 畜牧·兽医·资源昆虫 • 上一篇
张鹏飞1(),史良玉1,刘家鑫1,李洋1,吴成斌2,王立贤1,*(
),赵福平1,*(
)
收稿日期:
2020-11-13
接受日期:
2021-01-06
出版日期:
2021-12-16
发布日期:
2021-12-28
通讯作者:
王立贤,赵福平
作者简介:
张鹏飞,Tel:17806243706;E-mail: 基金资助:
ZHANG PengFei1(),SHI LiangYu1,LIU JiaXin1,LI Yang1,WU ChengBin2,WANG LiXian1,*(
),ZHAO FuPing1,*(
)
Received:
2020-11-13
Accepted:
2021-01-06
Online:
2021-12-16
Published:
2021-12-28
Contact:
LiXian WANG,FuPing ZHAO
摘要:
长纯合片段(runs of homozygosity, ROH)是在个体和群体中常见的连续性纯合片段,是亲代将同源相同的单倍型遗传给同一个后代而形成的。ROH蕴藏着种群丰富的遗传信息,这使ROH成为一种有用的工具,可以提供关于种群是如何随着时间的演变而变化的信息。ROH也可以用于估计个体间遗传关系,有助于将近亲交配率降至最低,还可以暴露基因组中有害的变异。ROH在基因组中的大小、分布和频率受到自然选择和人工选择、重组、连锁不平衡、群体历史、突变率和近交水平等诸多因素的影响。近年来,随着高通量基因分型技术的使用以及二代测序成本的降低,畜禽育种已经进入基因组时代。对优秀种畜禽的选择强度大大提高,这在改善畜禽生产性能的同时不可避免地会造成动物的近交,从而导致近交衰退。根据ROH的分子信息能更准确地估计纯合性并可以检测过去和最近的近亲交配情况。基于ROH计算近交系数(FROH)反映的是个体的真实近交系数,即为实现的近交系数,而系谱近交系数FPED得到的是期望值。FROH在缺乏系谱信息的情况下,也可以用来推断一个群体的历史和近亲交配水平的信息。选择会改变优良畜禽的表型,并重塑了基因组不同区域的ROH模式。此外,选择增加了目标位点周围的纯合性,有害的变异被认为更频繁地出现在ROH区域,可以通过ROH检测,降低复杂疾病发生的风险。经过长期选择,品种内同群个体相同ROH在基因组中高频出现,产生ROH岛。研究证实了ROH和正在选择的基因组区域之间具有相关性。在实际应用中,可以通过生物信息的方法在ROH岛注释到ROH区域与经济性状相关的基因。此外,ROH也为评估畜禽遗传多样性提供了新的视角,对群体进行全基因组ROH检测,剖析每个群体的遗传结构,并利用FROH对当前育种计划中近交的影响进行评估,来调整育种方案,保护品种的遗传多样性。ROH已逐渐成为探究群体历史结构、评估近交水平、鉴定候选基因方面的重要指标。识别ROH主要有观察基因型计数法和基于模型分析两种方法。常用的检测软件有PLINK、GERMLINE、BEAGLE、GARLIC等。在实际应用中,PLINK是最常用的ROH检测工具。在畜禽中,由于牛的SNP芯片推出最早,因此最先开展ROH研究的是牛的群体,牛的ROH研究数量最多、最深入。目前,在猪、羊、鸡等畜禽中关于ROH的研究也逐渐增多。文章主要综述了ROH形成的原理和检测方法,以及在畜禽中的研究进展,以期为畜禽的遗传育种提供参考。
张鹏飞,史良玉,刘家鑫,李洋,吴成斌,王立贤,赵福平. 畜禽全基因组长纯合片段检测的研究进展[J]. 中国农业科学, 2021, 54(24): 5316-5326.
ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals[J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[1] |
FRANCISCO C. CEBALLOS P K J, JAMES F. WILSON, DAVID W. CLARK, MICHèLE RAMSAY. Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics, 2018, 19(4):220-234.
doi: 10.1038/nrg.2017.109 |
[2] |
HAYES M G, KELLY A L. High pressure homogenisation of milk (b) effects on indigenous enzymatic activity. Journal of Dairy Research, 2003, 70(3):307-313.
doi: 10.1017/S0022029903006319 |
[3] | BROMAN K W, WEBER J L. Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. American Journal of Human Gentics, 1999, 65(6):1493-1500. |
[4] |
GIBSON J, MORTON N E, COLLINS A. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, 2006, 15(5):789-795.
doi: 10.1093/hmg/ddi493 |
[5] | 刘刚, 孙飞舟, 朱芳贤, 冯海永, 韩旭. 连续性纯合片段在畜禽基因组研究中的应用. 遗传, 2019, 41(4):304-317. |
LIU G, SUN F Z, ZHU F X, FENG H Y, HAN X. Runs of homozygosity and its application on livestock genome study. Hereditas(Beijing), 2019, 41(4):304-317. (in Chinese) | |
[6] |
KIRIN M, MCQUILLAN R, FRANKLIN C S, CAMPBELL H, MCKEIGUE P M, WILSON J F. Genomic runs of homozygosity record population history and consanguinity. PLoS One, 2010, 5(11):e13996.
doi: 10.1371/journal.pone.0013996 |
[7] |
CHARLESWORTH D, WILLIS J H. The genetics of inbreeding depression. Nature Reviews Genetics, 2009, 10(11):783-796.
doi: 10.1038/nrg2664 |
[8] |
ÁLVAREZ G, CEBALLOS F, BERRA FLS T. Darwin was right: inbreeding depression on malefertility in the Darwin family. Biological Journal of the Linnean Society, 2015, 114(2):474-483.
doi: 10.1111/bij.2015.114.issue-2 |
[9] |
BERRA T M, ALVAREZ G, CEBALLOS F C. Was the Darwin/ Wedgwood Dynasty Adversely Affected by Consanguinity? BioScience, 2010, 60(5):376-383.
doi: 10.1525/bio.2010.60.5.7 |
[10] |
MARRAS G, GASPA G, SORBOLINI S, DIMAURO C, AJMONE- MARSAN P, VALENTINI A, WILLIAMS J L, MACCIOTTA N P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, 2015, 46(2):110-121.
doi: 10.1111/age.2015.46.issue-2 |
[11] | 师睿, 张毅, 王雅春, 黄涛, 卢国昌, 岳涛, 卢振西, 黄锡霞, 卫新璞, 冯书堂, 陈军, 乌兰·卡格德尔, 茹先古丽·阿不力孜, 努尔胡马尔·木合塔尔. 利用SNP 芯片信息评估新疆近交牛基因组纯合度. 遗传, 2020, 42(5):493-505. |
SHI R, ZHANG Y, WANG Y C, HUANG T, LU G C, YUE T, LU Z X, HUANG X X, WEI X P, FENG S T, CHEN J, Wulan Kagedeer, Ruxianguli Abulizi, Nuerhumaer Muhetaer. The evaluation of genomic homozygosity for Xinjiang inbred population by SNP panels. Hereditas(Beijing), 2020, 42(5):493-505. (in Chinese) | |
[12] |
KIM E S, COLE J B, HUSON H, WIGGANS G R, VAN TASSELL C P, CROOKER B A, LIU G, DA Y, SONSTEGARD T S. Effect of artificial selection on runs of homozygosity in U. S. Holstein cattle. PLoS One, 2013, 8(11):e80813.
doi: 10.1371/journal.pone.0080813 |
[13] |
FORUTAN M, ANSARI MAHYARI S, BAES C, MELZER N, SCHENKEL F S, SARGOLZAEI M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein Cattle. BMC Genomics, 2018, 19(1):98.
doi: 10.1186/s12864-018-4453-z |
[14] |
SZMATOLA T, JASIELCZUK I, SEMIK-GURGUL E, SZYNDLER- NEDZA M, BLICHARSKI T, SZULC K, SKRZYPCZAK E, GURGUL A. Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. Journal of Animal Breeding and Genetics, 2020, 137(6):571-580.
doi: 10.1111/jbg.v137.6 |
[15] |
CURIK I F, MAJA SöLKNER, JOHANN. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science, 2014, 166(9):26-34.
doi: 10.1016/j.livsci.2014.05.034 |
[16] |
WILLIAMS J L, HALL S J, DEL CORVO M, BALLINGALL K T, COLLI L, AJMONE MARSAN P, BISCARINI F. Inbreeding and purging at the genomic Level: the Chillingham cattle reveal extensive, non-random SNP heterozygosity. Animal Genetics, 2016, 47(1):19-27.
doi: 10.1111/age.12376 |
[17] |
MCQUILLAN R, LEUTENEGGER A L, ABDEL-RAHMAN R, FRANKLIN C S, PERICIC M, BARAC-LAUC L, SMOLEJ- NARANCIC N, JANICIJEVIC B, POLASEK O, TENESA A, MACLEOD A K, FARRINGTON S M, RUDAN P, HAYWARD C, VITART V, RUDAN I, WILD S H, DUNLOP M G, WRIGHT A F, CAMPBELL H, WILSON J F. Runs of homozygosity in European populations. American Journal of Human Genetics, 2008, 83(3):359-372.
doi: 10.1016/j.ajhg.2008.08.007 |
[18] | WRIGHT S. Coefficients of inbreeding and relationship. Amerlcan Naturalist, 1922, 56:330-338. |
[19] | 杨湛澄, 黄河天, 闫青霞, 王雅春, 俞英, 陈绍祜, 孙东晓, 张胜利, 张毅. 利用高密度SNP标记分析中国荷斯坦牛基因组近交. 遗传, 2017, 39(1):41-47. |
YANG Z C, HUANG H T, YAN Q X, WANG Y C, YU Y, CHEN S H, SUN D X, ZHANG S L, ZHANG Y. Estimation of genomic inbreeding coefficients based on high-density snp markers in chinese holstein cattle. Hereditas(Beijing), 2017, 39(1):41-47. (in Chinese) | |
[20] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1):76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[21] |
VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11):4414-4423.
doi: 10.3168/jds.2007-0980 |
[22] |
BJELLAND D W, WEIGEL K A, VUKASINOVIC N, NKRUMAH J D. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. Journal of Dairy Science, 2013, 96(7):4697-4706.
doi: 10.3168/jds.2012-6435 |
[23] |
PURFIELD D C, BERRY D P, MCPARLAND S, BRADLEY D G. Runs of homozygosity and population history in cattle. BMC Genetics, 2012, 14(13):70.
doi: 10.1186/1471-2156-14-70 |
[24] |
KELLER M C, VISSCHER P M, GODDARD M E. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 2011, 189(1):237-249.
doi: 10.1534/genetics.111.130922 |
[25] |
PERIPOLLI E, MUNARI D P, SILVA M, LIMA A L F, IRGANG R, BALDI F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, 2017, 48(3):255-271.
doi: 10.1111/age.2017.48.issue-3 |
[26] |
PERIPOLLI E, STAFUZZA N B, MUNARI D P, LIMA A L F, IRGANG R, MACHADO M A, PANETTO J, VENTURA R V, BALDI F, DA SILVA M. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics, 2018, 19(1):34.
doi: 10.1186/s12864-017-4365-3 |
[27] |
LIU J X, SHI L Y, LI Y, CHEN L, DORIAN G, ZHAO F D. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. Journal of Animal Science and Biotechnology, 2021, 12(1):95.
doi: 10.1186/s40104-021-00608-9 |
[28] |
GARROD A E O M D L F R C P. The incidence of alkaptonuria: a study of chemical individuality. Molecular Medicine 1996, 2(3):274-282.
doi: 10.1007/BF03401625 |
[29] |
ZHANG Q, GULDBRANDTSEN B, BOSSE M, LUND M S, SAHANA G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, 2015, 16(1):542.
doi: 10.1186/s12864-015-1715-x |
[30] |
SZPIECH Z A, XU J, PEMBERTON T J, PENG W, ZOLLNER S, ROSENBERG N A, LI J Z. Long runs of homozygosity are enriched for deleterious variation. American Journal of Human Genetics, 2013, 93(1):90-102.
doi: 10.1016/j.ajhg.2013.05.003 |
[31] |
KIM Y, RYU J, WOO J, KIM J B, KIM C Y, LEE C. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Animal Genetics, 2011, 42(4):361-365.
doi: 10.1111/age.2011.42.issue-4 |
[32] | SNELLING W M, ALLAN M F, KEELE J W, KUEHN L A, MCDANELD T, SMITH T P, SONSTEGARD T S, THALLMAN R M, BENNETT G L. Genome-wide association study of growth in crossbred beef cattle. American Journal of Human Genetics, 2010, 88(3):837-848. |
[33] |
ISLAM R, LI Y, LIU X, BERIHULAY H, ABIED A, GEBRESELASSIE G, MA Q, MA Y. Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes, 2019, 10(11):938.
doi: 10.3390/genes10110938 |
[34] |
LUAN T, YU X, DOLEZAL M, BAGNATO A, MEUWISSEN T H. Genomic prediction based on runs of homozygosity. Genetics Selection Evolution, 2014, 46(1):64.
doi: 10.1186/s12711-014-0064-6 |
[35] |
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3):559-575.
doi: 10.1086/519795 |
[36] |
MEYERMANS R, GORSSEN W, BUYS N, JANSSENS S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics, 2020, 21(1):94.
doi: 10.1186/s12864-020-6463-x |
[37] |
GUSEV A, LOWE J K, STOFFEL M, DALY M J, ALTSHULER D, BRESLOW J L, FRIEDMAN J M, PE'ER I. Whole population, genome-wide mapping of hidden relatedness. Genome Research, 2009, 19(2):318-326.
doi: 10.1101/gr.081398.108 |
[38] |
BROWNING B L, BROWNING S R. Detecting identity by descent and estimating genotype error rates in sequence data. American Journal of Human Genetics, 2013, 93(5):840-851.
doi: 10.1016/j.ajhg.2013.09.014 |
[39] |
SZPIECH Z A, BLANT A, PEMBERTON T J. GARLIC: Genomic Autozygosity Regions Likelihood-based Inference and Classification. Bioinformatics, 2017, 33(13):2059-2062.
doi: 10.1093/bioinformatics/btx102 |
[40] | HOWRIGAN D P, SIMONSON M A, KELLER M C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, 2011, 23(12):460. |
[41] |
KUNINGAS M, MCQUILLAN R, WILSON J F, HOFMAN A, VAN DUIJN C M, UITTERLINDEN A G, TIEMEIER H. Runs of homozygosity do not influence survival to old age. PLoS One, 2011, 6(7):e22580.
doi: 10.1371/journal.pone.0022580 |
[42] |
NARASIMHAN V, DANECEK P, SCALLY A, XUE Y, TYLER-SMITH C, DURBIN R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics, 2016, 32(11):1749-1751.
doi: 10.1093/bioinformatics/btw044 |
[43] |
FERENCAKOVIC M, SOLKNER J, KAPS M, CURIK I. Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. Journal of Dairy Science, 2017, 100(6):4721-4730.
doi: 10.3168/jds.2016-12164 |
[44] |
MAXIMINI L, FUERST-WALTL B, GREDLER B, BAUMUNG R. Inbreeding depression on semen quality in Austrian dual-purpose simmental bulls. Reproduction in Domestic Animals, 2011, 46(1):e102-104.
doi: 10.1111/rda.2011.46.issue-1 |
[45] |
XU L, ZHAO G, YANG L, ZHU B, CHEN Y, ZHANG L, GAO X, GAO H, LIU G E, LI J. Genomic Patterns of Homozygosity in Chinese Local Cattle. Scientific reports, 2019, 9(1):16977.
doi: 10.1038/s41598-019-53274-3 |
[46] |
FERENCAKOVIC M, HAMZIC E, GREDLER B, SOLBERG T R, KLEMETSDAL G, CURIK I, SOLKNER J. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics, 2013, 130(4):286-293.
doi: 10.1111/jbg.12012 |
[47] |
MASTRANGELO S, SARDINA M T, TOLONE M, DI GERLANDO R, SUTERA A M, FONTANESI L, PORTOLANO B. Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds. Animal, 2018, 12(12):2480-2488.
doi: 10.1017/S1751731118000629 |
[48] | GOMEZ-RAYA L, RODRIGUEZ C, BARRAGAN C, SILIO L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, 2015, 16(47):81. |
[49] | SHI L Y, WANG L G, LIU J X, DENG T Y, YAN H, ZHANG L C, LIU X, GAO H M, HOU X H, WANG L X, ZHAO F P. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. Journal of Animal Science and Biotechnology, 2020, 28(11):46. |
[50] |
BOSSE M, MEGENS H J, MADSEN O, PAUDEL Y, FRANTZ L A, SCHOOK L B, CROOIJMANS R P, GROENEN M A. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, 2012, 8(11):e1003100.
doi: 10.1371/journal.pgen.1003100 |
[51] |
GROENEN M A, ARCHIBALD A L, UENISHI H, TUGGLE C K, TAKEUCHI Y, ROTHSCHILD M F, ROGEL-GAILLARD C, PARK C, MILAN D, MEGENS H J, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424):393-398.
doi: 10.1038/nature11622 |
[52] | HERRERO-MEDRANO J M, MEGENS H J, GROENEN M A, RAMIS G, BOSSE M, PEREZ-ENCISO M, CROOIJMANS R P. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 2013, 30(14):106. |
[53] |
FERREIRA E, SOUTO L, SOARES A M V M, FONSECA C. Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mammalian Biology, 2009, 74(4):274-285.
doi: 10.1016/j.mambio.2008.05.009 |
[54] |
ZHANG Z, ZHANG Q, XIAO Q, SUN H, GAO H, YANG Y, CHEN J, LI Z, XUE M, MA P, YANG H, XU N, WANG Q, PAN Y. Distribution of runs of homozygosity in Chinese and Western pig breeds evaluated by reduced-representation sequencing data. Animal Genetics, 2018, 49(6):579-591.
doi: 10.1111/age.12730 |
[55] | XIE R, SHI L Y, LIU J X, DENG T Y, WANG L G, LIU Y, ZHAO F P. Genome-Wide Scan for Runs of Homozygosity Identifies Candidate Genes in Three Pig Breeds. Animals (Basel), 2019, 9(8):518. |
[56] |
PURFIELD D C, MCPARLAND S, WALL E, BERRY D P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One, 2017, 12(5):e0176780.
doi: 10.1371/journal.pone.0176780 |
[57] | 刘家鑫, 魏霞, 邓天宇, 谢锐, 韩建林, 杜立新, 赵福平, 王立贤. 绵羊全基因组ROH检测及候选基因鉴定. 畜牧兽医学报, 2019, 50(8):1554-1566. |
LIU J X, WEI X, DENG T Y, RUI R, HAN J L, DU L X, ZHAO F P, WANG L X. Genome-wide scan for run of homozygosity and identification of corresponding candidate genes in sheep populations. Acta Veterinaria et Zootechnica Sinica, 2019, 50(8):1554-1566. (in Chinese) | |
[58] |
MASTRANGELO S, CIANI E, SARDINA M T, SOTTILE G, PILLA F, PORTOLANO B, BI.OV. ITA C. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Animal Genetics, 2018, 49(1):71-81.
doi: 10.1111/age.2018.49.issue-1 |
[59] |
MASTRANGELO S, TOLONE M, SARDINA M T, SOTTILE G, SUTERA A M, DI GERLANDO R, PORTOLANO B. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genetics Selection Evolution, 2017, 49(1):84.
doi: 10.1186/s12711-017-0360-z |
[60] |
BEYNON S E, SLAVOV G T, FARRE M, SUNDUIMIJID B, WADDAMS K, DAVIES B, HARESIGN W, KIJAS J, MACLEOD I M, NEWBOLD C J, DAVIES L, LARKIN D M. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics, 2015, 20(16):65.
doi: 10.1186/s12863-019-0746-8 |
[61] | FLEMING D S, KOLTES J E, MARKEY A D, SCHMIDT C J, ASHWELL C M, ROTHSCHILD M F, PERSIA M E, REECY J M, LAMONT S J. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics, 2016, 26(17):407. |
[62] |
ZHANG M, HAN W, TANG H, LI G, ZHANG M, XU R, LIU Y, YANG T, LI W, ZOU J, WU K. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics, 2018, 19(1):598.
doi: 10.1186/s12864-018-4973-6 |
[63] |
PRYCE J E, HAILE-MARIAM M, GODDARD M E, HAYES B J. Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle. Genetics Selection Evolution, 2014, 46(1):71-84.
doi: 10.1186/s12711-014-0071-7 |
[64] |
SAURA M, FERNANDEZ A, VARONA L, FERNANDEZ A I, DE CARA M A, BARRAGAN C, VILLANUEVA B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 2015, 47(1):1.
doi: 10.1186/s12711-014-0081-5 |
[65] | 史良玉, 王立刚, 张鹏飞, 莫家远, 李洋, 王立贤, 赵福平. 不同来源大白猪总产仔数近交衰退评估. 畜牧兽医学报, 2021, 52(10):2772-2782. |
SHI L Y, WANG L G, ZHANG P F, MO J Y, LI Y, WANG L X, ZHAO F P. Evaluation of Inbreeding Depression on the Total Numbers of Piglets Born in Different Groups of Large White Pigs. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10):2772-2782. (in Chinese) | |
[66] |
NANI J P, PENAGARICANO F. Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle. BMC Genomics, 2020, 21(1):338.
doi: 10.1186/s12864-020-6758-y |
[1] | 林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证[J]. 中国农业科学, 2023, 56(2): 217-235. |
[2] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[3] | 彭蕴,雷天刚,邹修平,张靖芸,张庆雯,姚家欢,何永睿,李强,陈善春. 柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱导表达[J]. 中国农业科学, 2020, 53(9): 1820-1829. |
[4] | 徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53(15): 2983-3004. |
[5] | 田志涛,赵永国,Lenka Havlickova,He Zhesi,Andrea L Harper,Ian Bancroft,邹锡玲,张学昆,陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析[J]. 中国农业科学, 2018, 51(4): 635-651. |
[6] | 曹学涛,裴生伟,张晋,李发弟,李刚,李万宏,乐祥鹏. 绵羊Y染色体特异性引物及SNPs的筛选[J]. 中国农业科学, 2018, 51(15): 2990-2999. |
[7] | 钟萍,陈璞睿,王迁,肖富良,张宽,马芙蓉,黄美菱,王平荣,邓晓建,孙昌辉. 水稻穗退化突变体spd11的遗传分析及候选基因鉴定[J]. 中国农业科学, 2016, 49(10): 1835-1843. |
[8] | 荐红举,魏丽娟,李超,唐章林,李加纳,刘列钊. 基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点[J]. 中国农业科学, 2014, 47(20): 3953-3961. |
[9] | 曾继吾, 姜波, 吴波, 钟云, 程春振, 母红娜, 甘廉生, 彭成绩, 钟广炎, 易干军. 野生‘龙门香橙’的植物学特征观察及起源研究[J]. 中国农业科学, 2014, 47(2): 334-343. |
[10] | 刘列钊, 李加纳. 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、 亚麻酸及芥酸含量QTL位点[J]. 中国农业科学, 2014, 47(1): 24-32. |
[11] | 张丽群1, 韦康1, 王丽鸳1, 成浩1, 刘本英2, 龚武云1. 茶树CHS基因结构及编码区单核苷酸多态性分析[J]. 中国农业科学, 2014, 47(1): 133-144. |
[12] | 王继英, 王海霞, 迟瑞宾, 郭建凤, 武英. 全基因组关联分析在畜禽中的研究进展[J]. 中国农业科学, 2013, 46(4): 819-829. |
[13] | 裴文宇, 云杰, 荣恩光, 杨华, 王志鹏, 王守志, 李辉, 王宁. 绵羊Dlx3基因启动子活性及其多态性与羊毛品质性状的关联[J]. 中国农业科学, 2013, 46(3): 614-622. |
[14] | 姜晓东, 张京, 郭刚刚. 大麦Amy32b的遗传多样性及其对α-淀粉酶活性的影响[J]. 中国农业科学, 2012, 45(5): 823-831. |
[15] | 刘斌, 赵存发, 李玉荣, 高凤芹, 高娃, 成立新, 孟克巴雅尔, 马跃军, 刘少卿, 李金泉. 内蒙古白绒山羊褪黑激素受体基因SNP与产绒性状的关联[J]. 中国农业科学, 2012, 45(19): 4092-4101. |
|