[1]Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D. Rose scent: genomics approach to discovering novel floral fragrance-related genes. The Plant Cell, 2002, 14(10): 2325-2338.
[2]Dudareva N, Pichersky E. Biochemical and molecular genetic aspects of floral scents. Plant Physiology, 2000, 122: 627-633.
[3]Dudareva N, Cseke L, Blanc V M, Pichersky E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. The Plant Cell, 1996, 8(7):1137-1148.
[4]Cseke L, Dudareva N, Pichersky E. Structure and evolution of linalool synthase. Molecular Biology and Evolution, 1998, 15(11):1491-1498.
[5]Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E. Volatile ester formation in roses. Identification of an acetyl-coenzyme A. geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiology, 2003, 131(4): 1868-1876.
[6]Joichi A, Yomogida K, Awano K, Ueda Y. Volatile components of tea-scented modern roses and ancient Chinese roses. Flavour and Fragrance Journal, 2005, 20:152-157.
[7]Wu S, Watanabe N, Mita S, Dohra H, Ueda Y, Shibuya M, Ebizuka Y. The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology, 2004, 135(1): 95-102.
[8]Scalliet G, Lionnet C, Le Bechec M, Dutron L, Magnard J L, Baudino S, Bergougnoux V, Jullien F, Chambrier P, Vergne P, Dumas C, Cock J M, Hugueney P. Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiology, 2006, 140(1): 18-29.
[9]Scalliet G, Piola F, Douady C J, Réty S, Raymond O, Baudino S, Bordji K, Bendahmane M, Dumas C, Cock J M, Hugueney P. Scent evolution in Chinese roses. Proceedings of the National Academy of Sciences of the USA, 2008, 105(15): 5927-5932.
[10]Kim H J,Kim K,Kim N S, Lee D S. Determination of floral fragrances of Rosa hybrida using solid-phase trapping-solvent extraction and gas chromatography-mass spectrometry. Journal of Chromatography, 2000, 902(2): 389-404.
[11]Buchbauer G, Jirovetz L, Wasicky M, Nikiforov A. Headspace and essential oil analysis of apple flowers. Journal of Agricultural and Food Chemistry, 1993, 41(1): 116-118.
[12]Koeduka T, Fridman E, Gang D R, Vassão D G, Jackson B L, Kish C M, Orlova I, Spassova S M, Lewis N G, Noel J P, Baiga T J, Dudareva N, Pichersky E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the USA, 2006, 103(26): 10128-10133.
[13]Koeduka T, Louie G V, Orlova I, Kish C M, Ibdah M, Wilkerson C G, Bowman M E, Baiga T J, Noel J P, Dudareva N, Pichersky E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. The Plant Journal, 2008, 54(3): 362-374.
[14]Verdonk J C, Haring M A, van Tunen A J, Schuurink R C. ODORANT1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell, 2005, 17(5): 1612-1624.
[15]Wu S, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y. Two O-methytransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering, 2003, 96(2): 119-128.
[16]晏慧君, 张颢, 谢吉容, 李树发, 蹇洪英, 邱显钦, 王其刚, 王继华,唐开学. 基于差减cDNA文库EST信息的月季花香突变体SSR标记的开发. 遗传, 2009, 31(9): 962-966.
Yan H J, Zhang H, Xie J R, Li S F, Jian H Y, Qiu X Q, Wang Q G, Wang J H, Tang K X. Development of new SSR markers from EST of SSH cDNA libraries on rose fragrance. Hereditas, 2009, 31(9): 962-966. (in Chinese)
[17]Akashi T, Koshimizu S, Aoki T, Ayabe S. Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Letters, 2006, 580(24): 5666-5670.
[18]Gang D R, Wang J, Dudareva N, Nam K H, Simon J E, Lewinsohn E, Pichersky E. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiology, 2001, 125(2): 539-555.
[19]Min T, Kasahara H, Bedgar D L, Youn B, Lawrence P K, Gang D R, Halls S C, Park H, Hilsenbeck J L, Davin L B, Lewis N G, Kang C. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. The Journal of Biological Chemistry, 2003, 278(50): 50714-50723.
[20]Yan H, Zhang H, Wang Q, Jian H, Qiu X, Wang J, Tang K. Isolation and identification of a putative scent-related gene RhMYB1 from rose. Molecular Biology Reports, 2011, 38(7): 4475-4482.
[21]Baudino S, Caissard J C, Bergougnoux V, Jullien F, Magnard J L, Scalliet G, Cock J M, Hugueney P. Production and emission of volatile compounds by petal cells. Plant Signaling and Behavior, 2007, 2(6): 525-526.
[22]Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D. Diurnal regulation of scent emission in rose flowers. Planta, 2007, 226(6): 1491-1499.
[23]Hall D A, Ptacek J, Snyder M. Protein microarray technology. Mechanisms of Ageing and Development, 2007, 128(1): 161-167.
[24]Parr R D, Ball J M. New donor vector for generation of histidine-tagged fusion proteins using the gateway cloning system. Plasmid, 2003, 49(2):179-183.
[25]Halabian R, Fathabad M E, Masroori N, Roushandeh A M, Saki S, Amirizadeh N, Najafabadi A J, Gharehbaghian A, Roudkenar M H. Expression and purification of recombinant human coagulation factor VII fused to a histidine tag using gateway technology. Blood Transfusion, 2009, 7(4): 305-312. |