| [1] |
FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology, 2013, 58: 517-541.
doi: 10.1146/annurev-ento-120811-153605
pmid: 23020617
|
| [2] |
RAO X, ZHAN M, PAN Y, LIU S, YANG P, YANG L, YU X. Immune functions of insect βGRPs and their potential application. Developmental and Comparative Immunology, 2018, 83: 80-88.
doi: 10.1016/j.dci.2017.12.007
|
| [3] |
KURATA S. Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)- family members in Drosophila. Developmental and Comparative Immunology, 2004, 28(2): 89-95.
doi: 10.1016/S0145-305X(03)00121-6
|
| [4] |
LEE H, KWON H, PARK J, KUROKAWA K, LEE B L. N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor. BMB Reports, 2009, 42(8): 506-510.
doi: 10.5483/BMBRep.2009.42.8.506
|
| [5] |
TAKAHASI K, OCHIAI M, HORIUCHI M, KUMETA H, OGURA K, ASHIDA M, INAGAKI F. Solution structure of the silkworm βGRP/GNBP3 N-terminal domain reveals the mechanism for β-1,3-glucan-specific recognition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11679-11684.
|
| [6] |
HUGHES A L. Evolution of the βGRP/GNBP/β-1,3-glucanase family of insects. Immunogenetics, 2012, 64(7): 549-558.
doi: 10.1007/s00251-012-0610-8
|
| [7] |
CAO Z, CAO J, VLASENKO V, BAKUMENKO O, LI W. Molecular characterization and functional analysis of a beta-1,3-glucan recognition protein from oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). Archives of Insect Biochemistry and Physiology, 2024, 115(1): e22068.
doi: 10.1002/arch.v115.1
|
| [8] |
BI J, MA X, JIANG Y, LIU P, GAO R, ZHAO T, YUAN X, HAO H, LI B, WANG Y. RNA interference-mediated silencing of GNBP2 reduces the immunity of stored pest Tribolium castaneum against bacteria. Pesticide Biochemistry and Physiology, 2025, 208: 106230.
doi: 10.1016/j.pestbp.2024.106230
|
| [9] |
HUANG W J, XU X X, FREED S, ZHENG Z H, WANG S, REN S X, JIN F L. Molecular cloning and characterization of a β-1,3-glucan recognition protein from Plutella xylostella (L.). New Biotechnology, 2015, 32(2): 290-299.
doi: 10.1016/j.nbt.2015.01.002
|
| [10] |
曹苗苗. GNBP3介导小菜蛾免疫反应的功能研究[D]. 广州: 华南农业大学, 2018.
|
|
CAO M M. Functional research of immune response about PxGNBP3 in Plutella xylostella (L.)[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
|
| [11] |
鞠雯燕. 小菜蛾GNBP2调控抗菌肽表达的研究[D]. 广州: 华南农业大学, 2018.
|
|
JU W Y. Study on the regulation of antimicrobial peptide expression by GNBP2 in Plutella xylostella (L.)[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
|
| [12] |
裘晖, 吴振强, 梁世中. 金龟子绿僵菌及其杀虫机理. 农药, 2004, 43(8): 342-345.
|
|
QIU H, WU Z Q, LIANG S Z. Metarhizium anisopliae and its insecticidal mechanism. Agrochemicals, 2004, 43(8): 342-345. (in Chinese)
|
| [13] |
HAN J H, JIN B R, KIM J J, LEE S Y. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Mycobiology, 2014, 42(4): 385-390.
doi: 10.5941/MYCO.2014.42.4.385
|
| [14] |
CHEN X R, LI L, HU Q B, ZHANG B W, WU W, JIN F L, JIANG J X. Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnology, 2015, 15: 64.
doi: 10.1186/s12896-015-0170-8
|
| [15] |
MINH B Q, SCHMIDT H A, CHERNOMOR O, SCHREMPF D, WOODHAMS M D, VON HAESELER A, LANFEAR R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 2020, 37(5): 1530-1534.
doi: 10.1093/molbev/msaa015
pmid: 32011700
|
| [16] |
INNAN H, KONDRASHOV F. The evolution of gene duplications: Classifying and distinguishing between models. Nature Reviews Genetics, 2010, 11(2): 97-108.
doi: 10.1038/nrg2689
pmid: 20051986
|
| [17] |
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37: W202-W208.
|
| [18] |
包顺才, 卢雪, 侯晓晖. 昆虫先天免疫调控机制的研究进展. 寄生虫与医学昆虫学报, 2024, 31(2): 115-122.
|
|
BAO S C, LU X, HOU X H. Research progress on innate immunity regulatory mechanisms in insects. Acta Parasitologica et Medica Entomologica Sinica, 2024, 31(2): 115-122. (in Chinese)
|
| [19] |
ZHAO L, NIU J, FENG D, WANG X, ZHANG R. Immune functions of pattern recognition receptors in Lepidoptera. Frontiers in Immunology, 2023, 14: 1203061.
doi: 10.3389/fimmu.2023.1203061
|
| [20] |
JI J, ZHOU L, XU Z, MA L, LU Z. Two atypical Gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). Insect Molecular Biology, 2021, 30(4): 427-435.
doi: 10.1111/imb.v30.4
|
| [21] |
BI J, LIU P, GAO R, JIANG Y, ZHANG C, ZHAO T, GAO L, WANG Y. Silencing Gram-negative bacteria binding protein 1 decreases the immunity of Tribolium castaneum against bacteria. International Journal of Biological Macromolecules, 2024, 264: 130631.
doi: 10.1016/j.ijbiomac.2024.130631
|
| [22] |
XIE X, WANG D, LI B, LIANG G, CHEN X, XING D, ZHAO T, ZHOU X, LI C. Aedes aegypti beta-1,3-glucan-binding protein inhibits dengue and ZIKA virus replication. Biomedicines, 2024, 12(1): 88.
doi: 10.3390/biomedicines12010088
|
| [23] |
ZHANG Y, YAN J, XIE Y, WANG X, REN F, BIAN H, SUN J. β-1,3-Glucan recognition protein can inhibit the proliferation of Bombyx mori cytoplasmic polyhedrosis virus. Insects, 2025, 16(4): 431.
doi: 10.3390/insects16040431
|
| [24] |
FENG K, JIANG D, LUO J, TANG F. OfGNBP silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). Pesticide Biochemistry and Physiology, 2023, 189: 105306.
doi: 10.1016/j.pestbp.2022.105306
|
| [25] |
MENZEL F, MORSBACH S, MARTENS J H, RÄDER P, HADJAJE S, POIZAT M, ABOU B. Communication versus waterproofing: The physics of insect cuticular hydrocarbons. Journal of Experimental Biology, 2019, 222(23): jeb210807.
|
| [26] |
靳良. 苏云金芽胞杆菌Cry蛋白与桃蚜和小菜蛾体内蛋白的互作研究[D]. 泉州: 华侨大学, 2023.
|
|
JIN L. Study on the interaction between Bacillus thuringiensis Cry proteins and proteins in Myzus persicae and Plutella xylostella[D]. Quanzhou: Huaqiao University, 2023. (in Chinese)
|
| [27] |
陈诗涵. 金龟子绿僵菌MaHGM202303对草地贪夜蛾的生防潜力研究[D]. 昆明: 云南农业大学, 2024.
|
|
CHEN S H. Study on the biocontrol potential of Metarhizium anisopliae MaHGM202303 against Spodoptera frugiperda[D]. Kunming: Yunnan Agricultural University, 2024. (in Chinese)
|
| [28] |
|
|
LI L, ZHANG Y Z, YAN W Y, ZENG L, PANG R, XU X X, JIN F L. The role of miR-6497-x in regulating the reaction of Plutella xylostella to fungal infection. Scientia Agricultura Sinica, 2025, 58(8): 1550-1563. doi: 10.3864/j.issn.0578-1752.2025.08.007. (in Chinese)
|
| [29] |
CHEN K K, LU Z Q. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. Developmental & Comparative Immunology, 2018, 83: 3-11.
|
| [30] |
LEMAITRE B, NICOLAS E, MICHAUT L, REICHHART J M, HOFFMANN J A. The dorsoventral regulatory gene Cassette spätzle/ Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86(6): 973-983.
doi: 10.1016/S0092-8674(00)80172-5
|
| [31] |
吴志鹏, 童应华. 球孢白僵菌和金龟子绿僵菌对红火蚁工蚁的致病力测定. 森林与环境学报, 2020, 40(1): 99-105.
|
|
WU Z P, TONG Y H. Pathogenicity determination of Beauveria bassiana and Metarhizium anisopliae against Solenopsis invicta workers. Journal of Forest and Environment, 2020, 40(1): 99-105. (in Chinese)
|
| [32] |
FLETCHER S J, REEVES P T, HOANG B T, MITTER N. A perspective on RNAi-based biopesticides. Frontiers in Plant Science, 2020, 11: 51.
doi: 10.3389/fpls.2020.00051
pmid: 32117388
|
| [33] |
HU J, XIA Y X. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F1F0-ATPase subunit genes. Pest Management Science, 2019, 75(1): 180-186.
doi: 10.1002/ps.2019.75.issue-1
|