中国农业科学 ›› 2026, Vol. 59 ›› Issue (1): 78-89.doi: 10.3864/j.issn.0578-1752.2026.01.006

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

基于形态指纹特征的耕地遥感监测轻量化大模型构建

唐华俊1(), 吴文斌1, 余强毅1, 史云1, 段玉林1, 李文娟1, 钱建平1, 宋茜1, 夏浪1, 李会宾1, 苏宝峰2, 范蓓蕾3, 胡琼4, 叶剑秋5, 张帅6   

  1. 1 中国农业科学院农业资源与农业区划研究所/北方干旱半干旱耕地高效利用全国重点实验室/农业农村部农业遥感重点实验室,北京 100081
    2 西北农林科技大学机械与电子工程学院,陕西杨凌 712100
    3 中国农业科学院农业信息研究所,北京 100081
    4 华中师范大学城市与环境科学学院,武汉430070
    5 中国热带农业科学院科技信息研究所,海口 571101
    6 农业农村部农田建设管理司,北京 100125
  • 收稿日期:2025-08-10 接受日期:2025-11-25 出版日期:2026-01-07 发布日期:2026-01-07
  • 联系方式: 唐华俊,E-mail:tanghuajun@caas.cn
  • 基金资助:
    国家农业科技重大项目

Developing a Lightweight Multimodal Model for Cropland Remote Sensing Monitoring

TANG HuaJun1(), WU WenBin1, YU QiangYi1, SHI Yun1, DUAN YuLin1, LI WenJuan1, QIAN JianPing1, SONG Qian1, XIA Lang1, LI HuiBin1, SU BaoFeng2, FAN BeiLei3, HU Qiong4, YE JianQiu5, ZHANG Shuai6   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi
    3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
    4 College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430070
    5 Institute of Scientific and Technical Information Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
    6 Department of Farmland Construction Management, Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2025-08-10 Accepted:2025-11-25 Published:2026-01-07 Online:2026-01-07

摘要:

耕地资源及其利用时空动态事关国家粮食安全、资源安全和生态安全。现阶段耕地遥感监测总体沿用了“数据—(模型)—信息”的科学研究范式,注重影像解译与信息提取过程的模型改进与精度提升,面临“信息海量、知识难求、服务受限”的困境,难以满足耕地保护利用实际需求,亟待提升科学研究成果对国家重大需求的支撑服务效能。人工智能(artificial intelligence,AI)技术加速推动数据主动检索与分析向智能化的知识服务与赋能转变,大型多模态模型在文本、图像、音频、视频等多模态数据处理中的突出优势,能够有效挖掘各类遥感监测信息和提供智能知识服务。本文在系统分析国内外最新研究进展、全面梳理耕地遥感监测应用需求的基础上,总结了通过耕地形态认知其结构与功能的核心特点,进而提出基于形态指纹特征的耕地遥感监测轻量化大模型构建思路。首先,针对不同主体分析需求,将耕地遥感监测应用场景归纳为4个方面,包括耕地数量和利用、高标准农田建设、耕地质量退化、耕地农情动态,明晰不同场景对监测信息和知识服务的差异化要求;其次,从人类认知的视角出发,解析耕地形态蕴含的“精细信息”和“宏观知识”特征,为耕地遥感监测大模型构建提供新的切入点;最后,结合多模态遥感数据与通用大语言模型,构建具备感知、推理、学习与执行能力的耕地遥感监测人工智能体(AI Agent),强化注意力机制,集中并抓住耕地形态重要特征,构建基于形态指纹特征的遥感监测轻量化大模型,实现“精细信息—宏观知识—智慧决策”融合,解决数据信息产品多但可用性知识服务不足的现实困境。

关键词: 人工智能, 耕地遥感监测, 应用场景, 形态特征, 注意力机制, 轻量化大模型

Abstract:

The spatio-temporal dynamics of cropland and their utilization are crucial to national food security, resource security and ecological security. Currently, the approach to cropland remote sensing monitoring generally follows the “data - (model) - information” paradigm. However, this paradigm has a significant “innovation-application” gap, with numerous information products but weak knowledge service capabilities, which fail to meet practical application needs of cropland protection and utilization. Artificial intelligence (AI) technology is accelerating the transformation from active data retrieval and analysis to intelligent knowledge services and empowerment. In the new era, the technical system for cropland remote sensing monitoring needs to be restructured. This paper thus proposed an innovative idea for constructing a lightweight multimodal model for cropland remote sensing monitoring. Firstly, it analyzed the demands of different subjects and categorized the application scenarios of cropland remote sensing monitoring into four aspects (cropland area and use, infrastructure, degradation, and crop growth), clarifying the specific requirements for monitoring information and knowledge services in different scenarios. Secondly, from the perspective of human cognition, it analyzed the “macro-level knowledge” and “fine-grained information” characteristics contained in the morphological features of cropland, providing a new entry point for the construction of a multimodal model for cropland remote sensing monitoring. Finally, it combines multi-modal remote sensing data with general large language models to construct an AI agent for cropland remote sensing monitoring, featuring capabilities in perception, reasoning, learning, and execution. It strengthens the attention mechanism to focus on and capture the important features of cropland morphology, and builds a lightweight multimodal model based on these features.

Key words: artificial intelligence, cropland remote sensing monitoring, application scenarios, morphological characteristics, attention mechanism, lightweight multimodal model