[1] |
NILSSON M, FAGMAN H. Development of the thyroid gland. Development, 2017, 144(12): 2123-2140.
doi: 10.1242/dev.145615
pmid: 28634271
|
[2] |
MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism. Physiological Reviews, 2014, 94(2): 355-382.
doi: 10.1152/physrev.00030.2013
pmid: 24692351
|
[3] |
SEEBACHER F, LITTLE A G. Thyroid hormone links environmental signals to DNA methylation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2024, 379(1898): 20220506.
|
[4] |
DUAN J, XU P Y, LUAN X D, JI Y J, HE X H, SONG N, YUAN Q N, JIN Y, CHENG X, JIANG H L, ZHENG J, ZHANG S Y, JIANG Y, XU H E. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature, 2022, 609(7928): 854-859.
|
[5] |
XU Y W, CAI H M, YOU C Z, HE X H, YUAN Q N, JIANG H L, CHENG X, JIANG Y, XU H E. Structural insights into ligand binding and activation of the human thyrotropin-releasing hormone receptor. Cell Research, 2022, 32(9): 855-857.
doi: 10.1038/s41422-022-00641-x
pmid: 35365755
|
[6] |
CHAGAS L M, BASS J J, BLACHE D, BURKE C R, KAY J K, LINDSAY D R, LUCY M C, MARTIN G B, MEIER S, RHODES F M, et al. Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. Journal of Dairy Science, 2007, 90(9): 4022-4032.
pmid: 17699018
|
[7] |
尹宏宇, 魏华, 刘瑾春. 维甲酸和甲状腺激素在骨髓间充质干细胞软骨分化中的作用. 首都医科大学学报, 2023, 44(2): 258-264.
|
|
YIN H Y, WEI H, LIU J C. Role of retinoic acid and thyroid hormone in chondrogenic differentiation of bone marrow mesenchymal stem cells. Journal of Capital Medical University, 2023, 44(2): 258-264. (in Chinese)
doi: 10.3969/j.issn.1006-7795.2023.02.012
|
[8] |
HALLETT S A, ONO W, ONO N. Growth plate chondrocytes: skeletal development, growth and beyond. International Journal of Molecular Sciences, 2019, 20(23): 6009.
|
[9] |
AĞIRDIL Y. The growth plate: A physiologic overview. EFORT Open Reviews, 2020, 5(8): 498-507.
doi: 10.1302/2058-5241.5.190088
pmid: 32953135
|
[10] |
HAMEED S, PATTERSON M, DHILLO W S, RAHMAN S A, MA Y, HOLTON C, GOGAKOS A, YEO G S H, LAM B Y H, POLEX- WOLF J, et al. Thyroid hormone receptor beta in the ventromedial hypothalamus is essential for the physiological regulation of food intake and body weight. Cell Reports, 2017, 19(11): 2202-2209.
doi: S2211-1247(17)30723-4
pmid: 28614708
|
[11] |
CASSAR-MALEK I, LANGLOIS N, PICARD B, GEAY Y. Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domestic Animal Endocrinology, 1999, 17(4): 373-388.
|
[12] |
张萌萌, 毛未贤, 宋玉庭, 吴乃宝. 降钙素合成分泌及生理作用. 中国骨质疏松杂志, 2020, 26(7): 1059-1062.
|
|
ZHANG M M, MAO W X, SONG Y T, WU N B. Calcitonin synthesis, secretion and physiological effects. Chinese Journal of Osteoporosis, 2020, 26(7): 1059-1062. (in Chinese)
|
[13] |
JI C, OU Y, YU W, LV J X, ZHANG F M, LI H S, GU Z Y, LI J Y, ZHONG Z M, WANG H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. Journal of Genetics and Genomics, 2024, 51(1): 61-74.
|
[14] |
DE ASSIS L V M, HARDER L, LACERDA J T, PARSONS R, KAEHLER M, CASCORBI I, NAGEL I, RAWASHDEH O, MITTAG J, OSTER H. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T(3)). supplementation. eLife, 2022, 11: e79405.
|
[15] |
FOX D G, PRESTON R L, SENFT B, JOHNSON R R. Plasma growth hormone levels and thyroid secretion rates during compensatory growth in beef cattle. Journal of Animal Science, 1974, 38(2): 437-441.
pmid: 4812296
|
[16] |
李华振, 刘武军, 刘秋月, 王翔宇, 胡文萍, 夏青, 李春艳, 贺小云, 狄冉, 储明星. 甲状腺激素受体基因调控动物繁殖的研究进展. 畜牧兽医学报, 2019, 50(2): 243-252.
|
|
LI H Z, LIU W J, LIU Q Y, WANG X Y, HU W P, XIA Q, LI C Y, HE X Y, DI R, CHU M X. Research progress on the regulative role of thyroid hormone receptor gene in animal reproduction. Chinese Journal of Animal and Veterinary Sciences, 2019, 50(2): 243-252. (in Chinese)
|
[17] |
STEINHOFF L, JUNG K, MEYERHOLZ M M, HEIDEKORN- DETTMER J, HOEDEMAKER M, SCHMICKE M. Thyroid hormone profiles and TSH evaluation during early pregnancy and the transition period in dairy cows. Theriogenology, 2019, 129: 23-28.
|
[18] |
WANG C, ZHENG P, ADENIRAN S O, MA M J, HUANG F S, ADEGOKE E O, ZHANG G X. Thyroid hormone (T(3)) is involved in inhibiting the proliferation of newborn calf Sertoli cells via the PI3K/Akt signaling pathway in vitro. Theriogenology, 2019, 133: 1-9.
|
[19] |
YAU W W, YEN P M. Thermogenesis in adipose tissue activated by thyroid hormone. International Journal of Molecular Sciences, 2020, 21(8): 3020.
|
[20] |
LITTLE A G, KUNISUE T, KANNAN K, SEEBACHER F. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio). BMC Biology, 2013, 11: 26.
doi: 10.1186/1741-7007-11-26
pmid: 23531055
|
[21] |
YAU W W, SINGH B K, LESMANA R, ZHOU J, SINHA R A, WONG K A, WU Y J, BAY B H, SUGII S, SUN L, YEN P M. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 2019, 15(1): 131-150.
|
[22] |
CHOUCHANI E T, KAZAK L, SPIEGELMAN B M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metabolism, 2019, 29(1): 27-37.
doi: S1550-4131(18)30679-X
pmid: 30503034
|
[23] |
SILVA J E. The thermogenic effect of thyroid hormone and its clinical implications. Annals of Internal Medicine, 2003, 139(3): 205-213.
pmid: 12899588
|
[24] |
CHRISTOFFOLETE M A, LINARDI C C G, DE JESUS L, EBINA K N, CARVALHO S D, RIBEIRO M O, RABELO R, CURCIO C, MARTINS L, KIMURA E T, BIANCO A C. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes, 2004, 53(3): 577-584.
doi: 10.2337/diabetes.53.3.577
pmid: 14988240
|
[25] |
BERNABUCCI U, LACETERA N, BAUMGARD L H, RHOADS R P, RONCHI B, NARDONE A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 2010, 4(7): 1167-1183.
doi: 10.1017/S175173111000090X
pmid: 22444615
|
[26] |
TODINI L. Thyroid hormones in small ruminants: Effects of endogenous, environmental and nutritional factors. Animal, 2007, 1(7): 997-1008.
doi: 10.1017/S1751731107000262
pmid: 22444802
|
[27] |
陈浩, 王纯洁, 斯木吉德, 张晨, 武思同, 徐萍, 曹佳明, 刘飞鸿, 敖日格乐. 慢性热应激对放牧肉牛血液生化指标、抗氧化能力及免疫功能的影响. 中国农业大学学报, 2021, 26(2): 61-69.
|
|
CHEN H, WANG C J, SMUJID , ZHANG C, WU S T, XU P, CAO J M, LIU F H, AORIGELE . Effects of chronic heat stress on blood biochemical index, immune function and antioxidant capacity of grazing beef cattle. Journal of China Agricultural University, 2021, 26(2): 61-69. (in Chinese)
|
[28] |
PERROTTA C, BULDORINI M, ASSI E, CAZZATO D, DE PALMA C, CLEMENTI E, CERVIA D. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. The American Journal of Pathology, 2014, 184(1): 230-247.
|
[29] |
HOEN E, GOOSSENS F M, FALIZE K, MAYERL S, VAN DER SPEK A H, BOELEN A. The differential effect of a shortage of thyroid hormone compared with knockout of thyroid hormone transporters Mct8 and Mct10 on murine macrophage polarization. International Journal of Molecular Sciences, 2024, 25(4): 2111.
|
[30] |
MADDUR M S, RAO S, CHOCKALINGAM A K, KISHORE S, GOPALAKRISHNA S, SINGH N, SURYANARAYANA V V S, GAJENDRAGAD M R. Absence of heat intolerance (panting) syndrome in foot-and-mouth disease-affected Indian cattle (Bos indicus) is associated with intact thyroid gland function. Transboundary and Emerging Diseases, 2011, 58(3): 274-279.
doi: 10.1111/j.1865-1682.2011.01203.x
pmid: 21388520
|
[31] |
LIU J T, ZHAO K F, QIAN T T, LI X X, YI W Z, PAN R B, HUANG Y E, JI Y F, SU H. Association between ambient air pollution and thyroid hormones levels: A systematic review and meta-analysis. Science of The Total Environment, 2023, 904: 166780.
|
[32] |
HORIKAMI D, SAYAMA N, SASAKI J, KUSUNO H, MATSUZAKI H, HAYASHI A, NAKAMURA T, SATOH H, NATSUHORI M, OKADA K, et al. The effect of exposure on cattle thyroid after the Fukushima Daiichi nuclear power plant accident. Scientific Reports, 2022, 12(1): 21754.
doi: 10.1038/s41598-022-25269-0
pmid: 36526648
|
[33] |
VAN VLIET N A, KAMPHUIS A E P, DEN ELZEN W P J, BLAUW G J, GUSSEKLOO J, NOORDAM R, VAN HEEMST D. Thyroid function and risk of Anemia: a multivariable-adjusted and mendelian randomization analysis in the UK biobank. The Journal of Clinical Endocrinology and Metabolism, 2022, 107(2): e643-e652.
|
[34] |
MARTINEZ M E, DUARTE C W, STOHN J P, KARACZYN A, WU Z F, DEMAMBRO V E, HERNANDEZ A. Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Molecular Psychiatry, 2020, 25(5): 939-950.
doi: 10.1038/s41380-018-0281-4
pmid: 30356120
|
[35] |
CAO C W, ZHANG Y, JIA Q T, WANG X, ZHENG Q T, ZHANG H Y, SONG R G, LI Y S, LUO A L, HONG Q L, et al. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Disease Models & Mechanisms, 2019, 12(1): dmm036616.
|
[36] |
RUBIN C J, ZODY M C, ERIKSSON J, MEADOWS J R S, SHERWOOD E, WEBSTER M T, JIANG L, INGMAN M, SHARPE T, KA S, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591.
|
[37] |
GROTTESI A, GABBIANELLI F, VALENTINI A, CHILLEMI G. Structural and dynamic analysis of G558R mutation in chicken TSHR gene shows altered signal transduction and corroborates its role as a domestication gene. Animal Genetics, 2020, 51(1): 51-57.
|
[38] |
SHEN Y F, MAO H G, HUANG M J, CHEN L X, CHEN J C, CAI Z W, WANG Y, XU N Y. Long noncoding RNA and mRNA expression profiles in the thyroid gland of two phenotypically extreme pig breeds using ribo-zero RNA sequencing. Genes, 2016, 7(7): 34.
|
[39] |
BRIGELIUS-FLOHÉ R, FLOHÉ L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants & Redox Signaling, 2020, 33(7): 498-516.
|
[40] |
LIU S L, GAO Y H, CANELA-XANDRI O, WANG S, YU Y, CAI W T, LI B J, XIANG R D, CHAMBERLAIN A J, PAIRO-CASTINEIRA E, et al. A multi-tissue atlas of regulatory variants in cattle. Nature Genetics, 2022, 54(9): 1438-1447.
doi: 10.1038/s41588-022-01153-5
pmid: 35953587
|
[41] |
LU X B, ARBAB A A I, ZHANG Z P, FAN Y L, HAN Z Y, GAO Q S, SUN Y J, YANG Z P. Comparative transcriptomic analysis of the pituitary gland between cattle breeds differing in growth: Yunling cattle and Leiqiong cattle. Animals, 2020, 10(8): 1271.
|
[42] |
SETH A, STANLEY S, DHILLO W, MURPHY K, GHATEI M, BLOOM S. Effects of galanin-like peptide on food intake and the hypothalamo-pituitary-thyroid axis. Neuroendocrinology, 2003, 77(2): 125-131.
pmid: 12624534
|
[43] |
LYU Y, WANG F W, CHENG H J, HAN J, DANG R H, XIA X T, WANG H, ZHONG J C, LENSTRA J A, ZHANG H C, et al. Recent selection and introgression facilitated high-altitude adaptation in cattle. Science Bulletin, 2024, 69(21): 3415-3424.
|
[44] |
KANG S, PARK H W, HAN K H. Antibodies regulate dual-function enzyme IYD to induce functional synergy between metabolism and thermogenesis. International Journal of Molecular Sciences, 2022, 23(14): 7834.
|
[45] |
王娟, 姜忠玲, 丛霞, 曹荣峰, 田文儒, 丰艳妮, 李华涛. 基于RNA-seq技术筛选低钙培养奶牛乳腺上皮细胞差异表达基因. 中国兽医杂志, 2021, 57(1): 27-31, 130-131.
|
|
WANG J, JIANG Z L, CONG X, CAO R F, TIAN W R, FENG Y N, LI H T. Screening differentially expressed genes based on RNA-seq technology in cow mammary epithelial cells cultured with low calcium medium. Chinese Journal of Veterinary Medicine, 2021, 57(1): 27-31, 130-131. (in Chinese)
|
[46] |
ANAFI M, YANG Y F, BARLEV N A, GOVINDAN M V, BERGER S L, BUTT T R, WALFISH P G. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone ReceptorFree. Molecular Endocrinology, 2000, 14(5): 718-732.
|
[47] |
HOWARD J T, KACHMAN S D, SNELLING W M, POLLAK E J, CIOBANU D C, KUEHN L A, SPANGLER M L. Beef cattle body temperature during climatic stress: A genome-wide association study. International Journal of Biometeorology, 2014, 58(7): 1665-1672.
doi: 10.1007/s00484-013-0773-5
pmid: 24362770
|
[48] |
ROBOTI P, SATO K, LOWE M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway. Journal of Cell Science, 2015, 128(8): 1595-1606.
doi: 10.1242/jcs.166710
pmid: 25717001
|
[49] |
WEITZEL J M, VIERGUTZ T, ALBRECHT D, BRUCKMAIER R, SCHMICKE M, TUCHSCHERER A, KOCH F, KUHLA B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows. The Journal of Endocrinology, 2017, 234(2): 129-141.
|
[50] |
HERNANDEZ-QUILES M, BROEKEMA M F, KALKHOVEN E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Frontiers in Endocrinology, 2021, 12: 624112.
|
[51] |
夏小婷. 瘤牛基因组遗传变异与环境适应性研究[D]. 杨凌: 西北农林科技大学, 2023.
|
|
XIA X T. Genetic variation and environmental adaptation of indicine cattle genome[D]. Yangling: Northwest Agriculture and Forestry University, 2023. (in Chinese)
|
[52] |
SZANTO I, PUSZTASZERI M, MAVROMATI M. H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants, 2019, 8(5): 126.
|
[53] |
DE SOUZA FONSECA P A, ID-LAHOUCINE S, REVERTER A, MEDRANO J F, FORTES M S, CASELLAS J, MIGLIOR F, BRITO L, CARVALHO M R S, SCHENKEL F S, NGUYEN L T, PORTO- NETO L R, THOMAS M G, CÁNOVAS A. Combining multi-OMICs information to identify key-regulator genes for pleiotropic effect on fertility and production traits in beef cattle. PLoS ONE, 2018, 13(10): e0205295.
|
[54] |
DEHGHANIAN REYHAN V, GHAFOURI F, SADEGHI M, MIRAEI-ASHTIANI S R, KASTELIC J P, BARKEMA H W, SHIRALI M. Integrated comparative transcriptome and circRNA- lncRNA-miRNA-mRNA CeRNA regulatory network analyses identify molecular mechanisms associated with intramuscular fat content in beef cattle. Animals, 2023, 13(16): 2598.
|
[55] |
SALCEDO-TACUMA D, PARALES-GIRON J, PROM C, CHIRIVI M, LAGUNA J, LOCK A L, CONTRERAS G A. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics, 2020, 21(1): 824.
|
[56] |
SCHERING L, ALBRECHT E, KOMOLKA K, KÜHN C, MAAK S. Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle. International Journal of Biological Sciences, 2017, 13(5): 532-544.
doi: 10.7150/ijbs.18775
pmid: 28539828
|
[57] |
POLASIK D, GOLIŃCZAK J, PROSKURA W, TERMAN A, DYBUS A. Association between THRSP gene polymorphism and fatty acid composition in milk of dairy cows. Animals, 2021, 11(4): 1144.
|
[58] |
AHONEN M A, HÖRING M, NGUYEN V D, QADRI S, TASKINEN J H, NAGARAJ M, WABITSCH M, FISCHER-POSOVSZKY P, ZHOU Y, LIEBISCH G, NIDHINA HARIDAS P A, YKI-JÄRVINEN H, OLKKONEN V M. Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes. Molecular Medicine, 2022, 28(1): 68.
doi: 10.1186/s10020-022-00496-3
pmid: 35715726
|
[59] |
WANG F Q, ZANG Y C, LI M M, LIU W M, WANG Y G, YU X L, LI H, WANG F, LIU S G. DUOX2 and DUOXA2 variants confer susceptibility to thyroid dysgenesis and gland-in-situ with congenital hypothyroidism. Frontiers in Endocrinology, 2020, 11: 237.
|
[60] |
CUI Y J, LIU Z Y, SUN X, HOU X M, QU B, ZHAO F, GAO X J, SUN Z, LI Q Z. Thyroid hormone responsive protein spot 14 enhances lipogenesis in bovine mammary epithelial cells. In Vitro Cellular & Developmental Biology-Animal, 2015, 51(6): 586-594.
|
[61] |
FONTANESI L, CALÒ D G, GALIMBERTI G, NEGRINI R, MARINO R, NARDONE A, AJMONE-MARSAN P, RUSSO V. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Animal Genetics, 2014, 45(4): 576-580.
doi: 10.1111/age.12164
pmid: 24796806
|
[62] |
DUARTE-GUTERMAN P, NAVARRO-MARTÍN L, TRUDEAU V L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. General and Comparative Endocrinology, 2014, 203: 69-85.
|
[63] |
FERNÁNDEZ M, LOAIZA ECHEVERRI A, HENRY M, DRUMMOND M, ANDRADE DE OLIVEIRA D, DEMYDA PEYRÁS S, CUNHA CARDOSO D, GIOVAMBATTISTA G, LIRON J. Bovine thyroglobulin gene polymorphisms and their association with sexual precocity in Guzerat bulls. Reproduction in Domestic Animals, 2017, 52(5): 911-913.
doi: 10.1111/rda.12989
pmid: 28580618
|
[64] |
CASILLAS S, BARBADILLA A. Molecular population genetics. Genetics, 2017, 205(3): 1003-1035.
doi: 10.1534/genetics.116.196493
pmid: 28270526
|
[65] |
LUO L H, GRIBSKOV M, WANG S F. Bibliometric review of ATAC-Seq and its application in gene expressionOpen Access. Briefings in Bioinformatics, 2022, 23(3): bbac061.
|
[66] |
RANZONI A M, TANGHERLONI A, BEREST I, RIVA S G, MYERS B, STRZELECKA P M, XU J R, PANADA E, MOHORIANU I, ZAUGG J B, CVEJIC A. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell, 2021, 28(3): 472-487.e7.
doi: 10.1016/j.stem.2020.11.015
pmid: 33352111
|
[67] |
NAZZARI M, ROMITTI M, HAUSER D, CARVALHO D J, GISELBRECHT S, MORONI L, COSTAGLIOLA S, CAIMENT F. Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq. Frontiers in Endocrinology, 2023, 14: 1200211.
|
[68] |
CAI C C, WAN P, WANG H, CAI X, WANG J B, CHAI Z X, WANG J K, WANG H B, ZHANG M, YANG N, WU Z J, ZHU J J, YANG X Y, LI Y L, YUE B L, DANG R H, ZHONG J C. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing. Cell Proliferation, 2023, 56(9): e13430.
|
[69] |
ALEXANDRE P A, NAVAL-SÁNCHEZ M, MENZIES M, NGUYEN L T, PORTO-NETO L R, FORTES M R S, REVERTER A. Chromatin accessibility and regulatory vocabulary across indicine cattle tissues. Genome Biology, 2021, 22(1): 273.
doi: 10.1186/s13059-021-02489-7
pmid: 34548076
|