[1] |
PIKALO J, ZANI L, HÜHR J, BEER M, BLOME S. Pathogenesis of African swine fever in domestic pigs and European wild boar - Lessons learned from recent animal trials. Virus Research, 2019, 271: 197614.
doi: 10.1016/j.virusres.2019.04.001
|
[2] |
陈腾, 张守峰, 周鑫韬, 李楠, 缪发明, 张静远, 刘晔, 吕宗吉, 张国军, 扈荣良. 我国首次非洲猪瘟疫情的发现和流行分析. 中国兽医学报, 2018, 38(9): 1831-1832.
|
|
CHEN T, ZHANG S F, ZHOU X T, LI N, MIAO F M, ZHANG J Y, LIU Y, LÜ Z J, ZHANG G J, HU R L. The discovery and epidemic analysis of the first African swine fever epidemic in China. Chinese Journal of Veterinary Science, 2018, 38(9): 1831-1832. (in Chinese)
|
[3] |
ZHOU X T, LI N, LUO Y Z, LIU Y, MIAO F M, CHEN T, ZHANG S F, CAO P L, LI X D, TIAN K G, QIU H J, HU R L. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018, 65(6): 1482-1484.
doi: 10.1111/tbed.2018.65.issue-6
|
[4] |
YOU S B, LIU T Y, ZHANG M, ZHAO X, DONG Y Z, WU B, WANG Y Z, LI J, WEI X J, SHI B F. African swine fever outbreaks in China led to gross domestic product and economic losses. Nature Food, 2021, 2(10): 802-808.
doi: 10.1038/s43016-021-00362-1
pmid: 37117973
|
[5] |
SUN E C, ZHANG Z J, WANG Z L, HE X J, ZHANG X F, WANG L L, WANG W Q, HUANG L Y, XI F, HUANGFU H Y, TSEGAY G, HUO H, SUN J H, TIAN Z J, XIA W, YU X W, LI F, LIU R Q, GUAN Y T, ZHAO D M, BU Z G. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China (Life Sciences), 2021, 64(5): 752-765.
|
[6] |
张艳艳, 张静远, 杨金金, 杨金梅, 韩桪, 米立娟, 张菲, 齐宇, 张守峰, 王颖, 周鑫韬, 岳慧贤, 王述超, 陈腾, 扈荣良. 1株非洲猪瘟病毒自然变异毒株的鉴定. 中国兽医学报, 2021, 41(2): 199-207.
|
|
ZHANG Y Y, ZHANG J Y, YANG J J, YANG J M, HAN X, MI L J, ZHANG F, QI Y, ZHANG S F, WANG Y, ZHOU X T, YUE H X, WANG S C, CHEN T, HU R L. Identification of a natural variant of African swine fever virus in China. Chinese Journal of Veterinary Science, 2021, 41(2): 199-207. (in Chinese)
|
[7] |
SUN E C, HUANG L Y, ZHANG X F, ZHANG J W, SHEN D D, ZHANG Z J, WANG Z L, HUO H, WANG W Q, HUANGFU H Y, WANG W, LI F, LIU R Q, SUN J H, TIAN Z J, XIA W, GUAN Y T, HE X J, ZHU Y M, ZHAO D M, BU Z G. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes & Infections, 2021, 10(1): 2183-2193.
|
[8] |
LIU S, LUO Y Z, WANG Y J, LI S H, ZHAO Z N, BI Y H, SUN J Q, PENG R C, SONG H, ZHU D J, SUN Y, LI S, ZHANG L, WANG W, SUN Y P, QI J X, YAN J H, SHI Y, GAO G F. Cryo-EM structure of the African swine fever virus. Cell Host & Microbe, 2019, 26(6): 836-843.e3.
|
[9] |
CACKETT G, MATELSKA D, SÝKORA M, PORTUGAL R, MALECKI M, BÄHLER J, DIXON L, WERNER F. The African swine fever virus transcriptome. Journal of Virology, 2020, 94(9): e00119-e00120.
|
[10] |
DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.
doi: 10.1016/j.virusres.2012.10.020
pmid: 23142553
|
[11] |
MALOGOLOVKIN A, KOLBASOV D. Genetic and antigenic diversity of African swine fever virus. Virus Research, 2019, 271: 197673.
doi: 10.1016/j.virusres.2019.197673
|
[12] |
RATHAKRISHNAN A, CONNELL S, PETROVAN V, MOFFAT K, GOATLEY L C, JABBAR T, SÁNCHEZ-CORDÓN P J, REIS A L, DIXON L K. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection. Journal of Virology, 2022, 96(6): e0189921.
doi: 10.1128/jvi.01899-21
|
[13] |
MORENS D M, FAUCI A S. Emerging pandemic diseases: how we got to COVID-19. Cell, 2020, 182(5): 1077-1092.
doi: S0092-8674(20)31012-6
pmid: 32846157
|
[14] |
ARIAS M, DE LA TORRE A, DIXON L, GALLARDO C, JORI F, LADDOMADA A, MARTINS C, PARKHOUSE R M, REVILLA Y, RODRIGUEZ F A J M, SANCHEZ-VIZCAINO. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines, 2017, 5(4): 35.
doi: 10.3390/vaccines5040035
|
[15] |
BLOME S, GABRIEL C, BEER M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882.
doi: 10.1016/j.vaccine.2014.05.051
pmid: 24877766
|
[16] |
CADENAS-FERNÁNDEZ E, SÁNCHEZ-VIZCAÍNO J M, VAN DEN BORN E, KOSOWSKA A, VAN KILSDONK E, FERNÁNDEZ- PACHECO P, GALLARDO C, ARIAS M, BARASONA J A. High doses of inactivated African swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines, 2021, 9(3): 242.
doi: 10.3390/vaccines9030242
|
[17] |
WANG T, LUO R, SUN Y, QIU H J. Current efforts towards safe and effective live attenuated vaccines against African swine fever: challenges and prospects. Infectious Diseases of Poverty, 2021, 10(1): 137.
doi: 10.1186/s40249-021-00920-6
pmid: 34949228
|
[18] |
王涛, 孙元, 罗玉子, 仇华吉. 非洲猪瘟防控及疫苗研发: 挑战与对策. 生物工程学报, 2018, 34(12): 1931-1942.
|
|
WANG T, SUN Y, LUO Y Z, QIU H J. Prevention, control and vaccine development of African swine fever: Challenges and countermeasures. Chinese Journal of Biotechnology, 2018, 34(12): 1931-1942. (in Chinese)
|
[19] |
LEITÃO A, CARTAXEIRO C, COELHO R, CRUZ B, PARKHOUSE R M E, PORTUGAL F C, VIGÁRIO J D, MARTINS C L V. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of GeRIAneral Virology, 2001, 82: 513-523.
|
[20] |
BOINAS F S, HUTCHINGS G H, DIXON L K, WILKINSON P J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. The Journal of General Virology, 2004, 85(Pt 8): 2177-2187.
doi: 10.1099/vir.0.80058-0
|
[21] |
GALLARDO C, SOLER A, RODZE I, NIETO R, CANO-GÓMEZ C, FERNANDEZ-PINERO J, AS M. Attenuated and non- haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404.
doi: 10.1111/tbed.2019.66.issue-3
|
[22] |
KRUG P W, HOLINKA L G, O'DONNELL V, REESE B, SANFORD B, FERNANDEZ-SAINZ I, GLADUE D P, ARZT J, RODRIGUEZ L, RISATTI G R, BORCA M V. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology, 2015, 89(4): 2324-2332.
doi: 10.1128/JVI.03250-14
pmid: 25505073
|
[23] |
WANG T, WANG L, HAN Y, PAN L, YANG J, SUN M W, ZHOU P P, SUN Y, BI Y H, QIU H J. Adaptation of African swine fever virus to HEK293T cells. Transboundary and Emerging Diseases, 2021, 68(5): 2853-2866.
doi: 10.1111/tbed.14242
pmid: 34314096
|
[24] |
BORCA M V, RAMIREZ-MEDINA E, SILVA E, VUONO E, RAI A, PRUITT S, HOLINKA L G, VELAZQUEZ-SALINAS L, ZHU J, GLADUE D P. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Journal of Virology, 2020, 94(7): e02017-e02019.
|
[25] |
MONTEAGUDO P L, LACASTA A, LÓPEZ E, BOSCH L, COLLADO J, PINA-PEDRERO S, CORREA-FIZ F, ACCENSI F, NAVAS M J, VIDAL E, BUSTOS M J, RODRÍGUEZ J M, GALLEI A, NIKOLIN V, SALAS M L, RODRÍGUEZ F. BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross- protective capabilities. Journal of Virology, 2017, 91(21): e01058-17.
|
[26] |
TEKLUE T, WANG T, LUO Y Z, HU R L, SUN Y, QIU H J. Generation and evaluation of an African swine fever virus mutant with deletion of the CD2v and UK genes. Vaccines, 2020, 8(4): 763.
doi: 10.3390/vaccines8040763
|
[27] |
CHEN W Y, ZHAO D M, HE X J, LIU R Q, WANG Z L, ZHANG X F, LI F, SHAN D, CHEN H F, ZHANG J W, WANG L L, WEN Z Y, WANG X J, GUAN Y T, LIU J X, BU Z G. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China (Life Sciences), 2020, 63(5): 623-634.
|
[28] |
ZHANG Y Y, KE J N, ZHANG J Y, YANG J J, YUE H X, ZHOU X T, QI Y, ZHU R N, MIAO F M, LI Q, ZHANG F, WANG Y, HAN X, MI L J, YANG J M, ZHANG S F, CHEN T, HU R L. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever. Journal of Virology, 2021, 95(23): e0119921.
doi: 10.1128/JVI.01199-21
|
[29] |
GLADUE D P, RAMIREZ-MEDINA E, VUONO E, SILVA E, RAI A, PRUITT S, ESPINOZA N, VELAZQUEZ-SALINAS L, BORCA M V. Deletion of the A137R gene from the pandemic strain of African swine fever virus attenuates the strain and offers protection against the virulent pandemic virus. Journal of Virology, 2021, 95(21): e0113921.
doi: 10.1128/JVI.01139-21
|
[30] |
LI J N, SONG J, KANG L, HUANG L, ZHOU S J, HU L, ZHENG J, LI C Y, ZHANG X F, HE X J, ZHAO D M, BU Z G, WENG C J. pMGF505-7 R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathogens, 2021, 17(7): e1009733.
|
[31] |
LI D, ZHANG J, YANG W P, LI P, RU Y, KANG W F, LI L L, RAN Y, ZHENG H X. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. Journal of Biological Chemistry, 2021, 297(5): 101190.
doi: 10.1016/j.jbc.2021.101190
|
[32] |
RAN Y, LI D, XIONG M G, LIU H N, FENG T, SHI Z W, LI Y H, WU H N, WANG S Y, ZHENG H X, WANG Y Y. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathogens, 2022, 18(1): e1010270.
doi: 10.1371/journal.ppat.1010270
|
[33] |
ZHANG K S, YANG B, SHEN C C, ZHANG T, HAO Y, ZHANG D J, LIU H N, SHI X J, LI G L, YANG J K, LI D, ZHU Z X, TIAN H, YANG F, RU Y, CAO W J, GUO J H, HE J J, ZHENG H X, LIU X T. MGF360-9 L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio, 2022, 13(1): e0233021.
|
[34] |
O'DONNELL V, HOLINKA L G, SANFORD B, KRUG P W, CARLSON J, PACHECO J M, REESE B, RISATTI G R, GLADUE D P, BORCA M V. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016, 221: 8-14.
doi: 10.1016/j.virusres.2016.05.014
|
[35] |
GLADUE D P, O'DONNELL V, RAMIREZ-MEDINA E, RAI A, PRUITT S, VUONO E A, SILVA E, VELAZQUEZ-SALINAS L, BORCA M V. Deletion of CD2-like (CD2v) and C-type lectin-like (EP153R) genes from African swine fever virus Georgia-∆9GL abrogates its effectiveness as an experimental vaccine. Viruses, 2020, 12(10): 1185.
doi: 10.3390/v12101185
|
[36] |
LOPEZ E, BOSCH-CAMÓS L, RAMIREZ-MEDINA E, VUONO E, NAVAS M J, MUÑOZ M, ACCENSI F, ZHANG J Y, ALONSO U, ARGILAGUET J, SALAS M L, ANACHKOV N, GLADUE D P, BORCA M V, PINA-PEDRERO S, RODRIGUEZ F. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses, 2021, 13(9): 1678.
doi: 10.3390/v13091678
|
[37] |
GAUDREAULT N N, RICHT J A. Subunit vaccine approaches for African swine fever virus. Vaccines, 2019, 7(2): 56.
doi: 10.3390/vaccines7020056
|
[38] |
GOATLEY L C, REIS A L, PORTUGAL R, GOLDSWAIN H, SHIMMON G L, HARGREAVES Z, HO C S, MONTOYA M, SÁNCHEZ-CORDÓN P J, TAYLOR G, DIXON L K, NETHERTON C L. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines, 2020, 8(2): 234.
doi: 10.3390/vaccines8020234
|
[39] |
DAI L P, GAO G F. Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, 21(2): 73-82.
doi: 10.1038/s41577-020-00480-0
pmid: 33340022
|
[40] |
GEBRE M S, BRITO L A, TOSTANOSKI L H, EDWARDS D K, CARFI A, BAROUCH D H. Novel approaches for vaccine development. Cell, 2021, 184(6): 1589-1603.
doi: 10.1016/j.cell.2021.02.030
pmid: 33740454
|
[41] |
LACASTA A, BALLESTER M, MONTEAGUDO P L, RODRÍGUEZ J M, SALAS M L, ACCENSI F, PINA-PEDRERO S, BENSAID A, ARGILAGUET J, LÓPEZ-SORIA S, HUTET E, LE POTIER M F, RODRÍGUEZ F. Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 2014, 88(22): 13322-13332.
doi: 10.1128/JVI.01893-14
pmid: 25210179
|
[42] |
SUNWOO S Y, PÉREZ-NÚÑEZ D, MOROZOV I, SÁNCHEZ E G, GAUDREAULT N N, TRUJILLO J D, MUR L, NOGAL M, MADDEN D, URBANIAK K, KIM I J, MA W, REVILLA Y, RICHT J A. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines, 2019, 7(1): 12.
doi: 10.3390/vaccines7010012
|
[43] |
WANG T, SUN Y, HUANG S J, QIU H J. Multifaceted immune responses to African swine fever virus: implications for vaccine development. Veterinary Microbiology, 2020, 249: 108832.
doi: 10.1016/j.vetmic.2020.108832
|
[44] |
SCHÄFER A, ZANI L, PIKALO J, HÜHR J, SEHL J, METTENLEITER T C, BREITHAUPT A, BLOME S, BLOHM U. T-cell responses in domestic pigs and wild boar upon infection with the moderately virulent African swine fever virus strain ‘Estonia2014’. Transboundary and Emerging Diseases, 2021, 68(5): 2733-2749.
doi: 10.1111/tbed.v68.5
|
[45] |
SÁNCHEZ-CORDÓN P J, JABBAR T, CHAPMAN D, DIXON L K, MONTOYA M. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninΔMGF correlates with increased levels of regulatory T cells and interleukin-10. Journal of Virology, 2020, 94(14): e00350-e00320.
|
[46] |
KING K, CHAPMAN D, ARGILAGUET J M, FISHBOURNE E, HUTET E, CARIOLET R, HUTCHINGS G, OURA C A L, NETHERTON C L, MOFFAT K, TAYLOR G, LE POTIER M F, DIXON L K, TAKAMATSU H H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600.
doi: 10.1016/j.vaccine.2011.04.052
pmid: 21549789
|
[47] |
SÁNCHEZ-CORDÓN P J, JABBAR T, BERREZAIE M, CHAPMAN D, REIS A, SASTRE P, RUEDA P, GOATLEY L, DIXON L K. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine, 2018, 36(5): 707-715.
doi: 10.1016/j.vaccine.2017.12.030
|
[48] |
MINOUNGOU G L, DIOP M, DAKOUO M, OUATTARA A K, SETTYPALLI T B K, LO M M, SIDIBE S, KANYALA E, KONE Y S, DIALLO M S, OUEDRAOGO A, COULIBALY K, OUEDRAOGO V, SOW I, NIANG M, ACHENBACH J E, WADE A, UNGER H, DIALLO A, CATTOLI G, LAMIEN C E, SIMPORE J. Molecular characterization of African swine fever viruses in Burkina Faso, Mali, and Senegal 1989-2016: Genetic diversity of ASFV in West Africa. Transboundary and Emerging Diseases, 2021, 68(5): 2842-2852.
doi: 10.1111/tbed.v68.5
|
[49] |
DIXON L K, STAHL K, JORI F, VIAL L, PFEIFFER D U. African swine fever epidemiology and control. Annual Review of Animal Biosciences, 2020, 8: 221-246.
doi: 10.1146/annurev-animal-021419-083741
pmid: 31743062
|
[50] |
FORTH J H, FORTH L F, BLOME S, HÖPER D, BEER M. African swine fever whole-genome sequencing-Quantity wanted but quality needed. PLoS Pathogens, 2020, 16(8): e1008779.
doi: 10.1371/journal.ppat.1008779
|
[51] |
CACKETT G, SÝKORA M, WERNER F. Transcriptome view of a killer: African swine fever virus. Biochemical Society Transactions, 2020, 48(4): 1569-1581.
doi: 10.1042/BST20191108
pmid: 32725217
|
[52] |
SUN H L, NIU Q L, YANG J F, ZHAO Y R, TIAN Z C, FAN J, ZHANG Z H, WANG Y W, GENG S X, ZHANG Y L, GUAN G Q, WILLIAMS D T, LUO J X, YIN H, LIU Z J. Transcriptome profiling reveals features of immune response and metabolism of acutely infected, dead and asymptomatic infection of African swine fever virus in pigs. Frontiers in Immunology, 2021, 12: 808545.
doi: 10.3389/fimmu.2021.808545
|
[53] |
XUE Q, LIU H S, ZHU Z X, YANG F, SONG Y Y, LI Z Q, XUE Z N, CAO W J, LIU X T, ZHENG H X. African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. Journal of Virology, 2022, 96(4): e0191921.
doi: 10.1128/jvi.01919-21
|
[54] |
ALEJO A, MATAMOROS T, GUERRA M, ANDRÉS G. A proteomic atlas of the African swine fever virus particle. Journal of Virology, 2018, 92(23): e01293-e01218.
|
[55] |
BORCA M V, HOLINKA L G, BERGGREN K A, GLADUE D P. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Scientific Reports, 2018, 8: 3154.
doi: 10.1038/s41598-018-21575-8
pmid: 29453406
|
[56] |
FREITAS F B, SIMÕES M, FROUCO G, MARTINS C, FERREIRA F. Towards the generation of an ASFV-pA104R DISC mutant and a complementary cell line-A potential methodology for the production of a vaccine candidate. Vaccines, 2019, 7(3): 68.
doi: 10.3390/vaccines7030068
|
[57] |
COELHO J, LEITÃO A. The African swine fever virus (ASFV) topoisomerase II as a target for viral prevention and control. Vaccines, 2020, 8(2): 312.
doi: 10.3390/vaccines8020312
|
[58] |
CACKETT G, PORTUGAL R, MATELSKA D, DIXON L, WERNER F. African swine fever virus and host response: Transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. Journal of Virology, 2022, 96(5): e0193921.
doi: 10.1128/jvi.01939-21
|
[59] |
WANG Y, KANG W F, YANG W P, ZHANG J, LI D, ZHENG H X. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: A review. Frontiers in Immunology, 2021, 12: 715582.
doi: 10.3389/fimmu.2021.715582
|
[60] |
ZHANG G L, LIU W, GAO Z, CHANG Y Y, YANG S C, PENG Q, GE S D, KANG B J, SHAO J J, CHANG H Y. Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI. Virology Journal, 2022, 19(1): 16.
doi: 10.1186/s12985-022-01747-9
pmid: 35062983
|
[61] |
LOPERA-MADRID J, MEDINA-MAGÜES L G, GLADUE D P, BORCA M V, OSORIO J E. Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Scientific Reports, 2021, 11: 23476.
doi: 10.1038/s41598-021-02949-x
|
[62] |
LIU Y J, ZHANG X H, QI W B, YANG Y Z, LIU Z X, AN T Q, WU X H, CHEN J X. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China. Viruses, 2021, 13(12): 2552.
doi: 10.3390/v13122552
|
[63] |
张丽, 罗玉子, 王涛, 孙元, 仇华吉. 非洲猪瘟诊断技术发展现状与需求分析. 中国农业科技导报, 2019, 21(9): 1-11.
doi: 10.13304/j.nykjdb.2019.0209
|
|
ZHANG L, LUO Y Z, WANG T, SUN Y, QIU H J. Current progress and demand analysis of diagnostic technologies for African swine fever. Journal of Agricultural Science and Technology, 2019, 21(9): 1-11. (in Chinese)
doi: 10.13304/j.nykjdb.2019.0209
|
[64] |
TRAN X H, LE T, NGUYEN Q H, DO T T, NGUYEN V D, GAY C G, BORCA M V, GLADUE D P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69(4): e497-e504.
|
[65] |
SEREDA A D, BALYSHEV V M, KAZAKOVA A S, IMATDINOV A R, KOLBASOV D V. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens (Basel, Switzerland), 2020, 9(4): 274.
|
[66] |
ROCK D L. Thoughts on African swine fever vaccines. Viruses, 2021, 13(5): 943.
doi: 10.3390/v13050943
|
[67] |
KARGER A, PÉREZ-NÚÑEZ D, URQUIZA J, HINOJAR P, ALONSO C, FREITAS F B, REVILLA Y, LE POTIER M F, MONTOYA M. An update on African swine fever virology. Viruses, 2019, 11(9): 864.
doi: 10.3390/v11090864
|
[68] |
QU H L, GE S Q, ZHANG Y Q, WU X D, WANG Z L. A systematic review of genotypes and serogroups of African swine fever virus. Virus Genes, 2022, 58(2): 77-87.
doi: 10.1007/s11262-021-01879-0
pmid: 35061204
|
[69] |
GAVIER-WIDÉN D, STÅHL K, DIXON L. No hasty solutions for African swine fever. Science, 2020, 367(6478): 622-624.
doi: 10.1126/science.aaz8590
|