中国农业科学 ›› 2016, Vol. 49 ›› Issue (16): 3152-3161.doi: 10.3864/j.issn.0578-1752.2016.16.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

放线菌JXJ-0136对白菜和豇豆生长的影响及其解磷作用

张炳火,李汉全,罗娟艳,杨建远,石红璆,孙凤珍   

  1. 九江学院药学与生命科学学院,江西九江 332000
  • 收稿日期:2016-03-23 出版日期:2016-08-16 发布日期:2016-08-16
  • 通讯作者: 李汉全,Tel:0792-8565939;E-mail:lihanquan62@126.com
  • 作者简介:张炳火,E-mail:binghuozh@126.com
  • 基金资助:
    国家自然科学基金(31060010)、江西省科技支撑计划(20121BBF60048)

Influences of Actinomycete Strain JXJ-0136 on the Growth of Brassica chinensis and Vigna unguiculata and Its Phosphate Solubilization

ZHANG Bing-huo, LI Han-quan, LUO Juan-yan, YANG Jian-yuan, SHI Hong-qiu, SUN Feng-zhen   

  1. College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi
  • Received:2016-03-23 Online:2016-08-16 Published:2016-08-16

摘要: 【目的】确定放线菌JXJ-0136的分类地位,分析其溶解不溶性磷的能力,在作物根际土壤定殖的情况及对蔬菜种子萌发、幼苗生长和蔬菜产量的影响,评价该菌在研制微生物肥料方面的潜在应用价值。【方法】利用培养特征、形态学特征和16S rRNA基因序列系统发育分析,初步确定菌株JXJ-0136的分类学地位;以白菜和豇豆为指示植物,采用琼脂平板法,研究该菌对蔬菜种子萌发和幼苗生长的影响;采用田间栽培试验,研究菌株对作物生长和产量的影响,测定栽培前后土壤总磷的含量,分析该菌对作物利用土壤磷效率的影响,并对作物根际土壤微生物进行分离纯化,分析该菌在根际土壤中的定殖情况;采用液体纯培养方式,研究菌株对不溶性无机磷和有机磷的溶解效率,分析其解磷机理。【结果】放线菌JXJ-0136在6—45℃、pH 4.0—13.0和0—4%(w/v)的盐浓度下均能生长,其中最适生长温度、pH和盐浓度分别约为28℃、pH 8.0和1%(w/v),在ISP2培养基上该菌气丝较发达,灰白色,孢子丝簇生,孢子长卵圆形;该菌16S rRNA基因序列与链霉菌Streptomyces violascensS. somaliensisS. hydrogenansS. albidoflavusS. daghestanicus的亲缘关系最近,相似性依次为97.98%、97.71%、97.30%、97.23%和97.03%,但在系统进化树上与这些菌聚在不同分支上;该菌培养液能够显著提高作物种子萌发率,促进幼苗生长,在0.2%—0.8%的剂量下,白菜种子萌发率、幼苗株高和根长分别比对照组增加3.55%—12.61%、13.91%—53.03%和7.37%—51.92%,豇豆种子萌发率、幼苗株高和根长分别比对照组增加4.71%—21.18%、3.60%—22.33%和2.37%—20.08%;田间栽培试验显示,该菌能够定殖于根际土壤,促进作物对土壤磷的利用,提高作物产量,当每穴施加5 mL该菌培养液,试验结束时,白菜和豇豆试验组的土壤总磷含量分别下降(23.56±2.65)%和(37.10±1.98)%,分别为对照组的(1.77±0.29)和(2.70±0.15)倍(P<0.01),而白菜和豇豆的产量却分别比对照组增加(27.59±6.15)%和(70.29±5.15)%(P<0.01);液体纯培养条件下接种培养5 d后,无机磷和有机磷培养基pH值由起始的7.0分别降至5.0和6.0,有效磷元素含量比对照组分别增加(73.94±0.94)和(7.12±0.28)mg(P<0.01)。【结论】放线菌JXJ-0136是链霉菌属的成员,能够显著提高作物种子的萌发率,增加幼苗株高和根长,并定殖于根际土壤中,增加土壤可溶性磷的含量,提高作物对土壤磷的利用效率,促进它们的生长,增加其产量,在微生物肥料研制中具有较大的潜在应用价值。

关键词: 微生物肥料, 放线菌JXJ-0136, 链霉菌, 白菜, 豇豆, 解磷

Abstract: 【Objective】The objective of this study is to determine the taxonomic status of an actinomycete strain JXJ-0136, investigate its ability of dissolving insoluble phosphorus, the colonization in the rhizospheric soil of crops, and its influences on the seed germination, seedling growth and yield of vegetables, and to evaluate the application value of strain JXJ-0136 in developing microbial fertilizer.【Method】Taxonomic status of strain JXJ-0136 was determined on the basis of the cultural and morphological characteristics, and the phylogenetic analysis of 16S rRNA gene sequence. Influences of strain JXJ-0136 on the seed germination and seedling growth were studied using agar plate. The field cultivation tests were carried out to investigate the influences of strain JXJ-0136 on the growth and yield of vegetables. The total contents of phosphorus in the soil before and after the field trial were measured to investigate the influence of strain JXJ-0136 on the utilization of phosphorus in the soil by crops. The colonization of strain JXJ-0136 in the rhizospheric soil of the plants was investigated by isolation of the microorganisms in rhizosphere soil. The efficiencies of strain JXJ-0136 to dissolve insoluble inorganic and organic phosphorus were investigated using liquid pure culture. The model vegetables of the study were Brassica chinensis and Vigna unguiculata. 【Result】 Growth of actinomycete strain JXJ-0136 was observed at 6-45℃, pH 4.0-13.0 and 0-4% (w/v) NaCl, with optimal growth at 28℃, pH 8.0 and 1% (w/v) NaCl. Strain JXJ-0136 developed well-branched aerial mycelia on ISP 2 medium. The aerial mycelia was off-white in color. Its spore chains were fascicular with elliptical spores. The 16S rRNA gene sequence was closest to Streptomyces violascens, S. somaliensis, S. hydrogenans, S. albidoflavus and S. daghestanicus with the similarities of 97.98%, 97.71%, 97.30%, 97.23% and 97.03%, respectively. However, strain JXJ-0136 formed different clades on phylogenetic tree. The culture broth of strain JXJ-0136 enhanced the seed germination and the seedling growth significantly. After addition of 0.2%-0.8% broth culture of strain JXJ-0136, the seed germination rate, plant height and root length of B. chinensis were 3.55%-12.61%, 13.91%-53.03% and 7.37%-51.92% higher than those of the controls, respectively. The seed germination rate, plant height and root length of V. unguiculata were 4.71%-21.18%, 3.60%-22.33% and 2.37%-20.08% higher than these of the controls, respectively. The field cultivation tests indicated that strain JXJ-0136 could colonize in the rhizospheric soil of the plants, and promoted crops to utilize phosphorus in the soil, and enhanced the yields of the crops. After inoculating with 5 mL broth culture of strain JXJ-0136 to each plant, the soil total phosphorus contents of B. chinensis and V. unguiculata decreased by (23.56±2.65)% and (37.10±1.98)%, respectively, at the end of the tests, which were (1.77±0.29) and (2.70±0.15) times of the controls (P<0.01). The yields of B. chinensis and V. unguiculata increased by (27.59±6.15)% and (70.29±5.15)% (P<0.01) than the controls, respectively. After inoculating strain JXJ-0136 and culturing for 5 days under liquid pure culture condition, the pH values of inorganic and organic phosphorus cultures decreased to 5.0 and 6.0 initially from pH 7.0, respectively, and available phosphorus in the cultures of inorganic and organic phosphorus increased by (73.94±0.94) and (7.12±0.28) mg (P<0.01), respectively. 【Conclusion】Actinomycete JXJ-0136 is a member of the genus Streptomyces. With good properties including increasing the seed germination, plant height and root length of seedling, colonizing in rhizospheric soil, increasing the content of the available phosphorus in the soil, enhancing the crops to utilize the phosphorus in the soil and promoting the growth and yields of crops, strain JXJ-0136 has a potential application value in developing microbial fertilizer.

Key words: microbial fertilizer, actinomycete JXJ-0136, Streptomyces, Brassica chinensis, Vigna unguiculata, phosphoric solubilization