[1] |
DE KONING A P J, GU W J, CASTOE T A, BATZER M A, POLLOCK D D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics, 2011, 7(12): e1002384. doi: 10.1371/journal.pgen.1002384.
doi: 10.1371/journal.pgen.1002384
|
[2] |
SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, ZHANG J W, FULTON L, GRAVES T A, et al. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115. doi: 10.1126/science.1178534.
doi: 10.1126/science.1178534
|
[3] |
HESLOP-HARRISON J S, SCHWARZACHER T. Organisation of the plant genome in chromosomes. The Plant Journal, 2011, 66(1): 18-33. doi: 10.1111/j.1365-313X.2011.04544.x.
doi: 10.1111/j.1365-313X.2011.04544.x.
|
[4] |
艾对元. 基因组中重复序列的意义. 生命的化学, 2008, 28(3): 343-345. doi: 10.3969/j.issn.1000-1336.2008.03.031.
doi: 10.3969/j.issn.1000-1336.2008.03.031
|
|
AI D Y. The meaning of repeat sequences. Chemistry of Life, 2008, 28(3): 343-345. doi: 10.3969/j.issn.1000-1336.2008.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-1336.2008.03.031
|
[5] |
AHMED M, LIANG P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comparative and Functional Genomics, 2012, 2012: 947089. doi: 10.1155/2012/947089.
doi: 10.1155/2012/947089
|
[6] |
JURKA J, GENTLES A J. Origin and diversification of minisatellites derived from human Alu sequences. Gene, 2006, 365: 21-26. doi: 10.1016/j.gene.2005.09.029.
doi: 10.1016/j.gene.2005.09.029
|
[7] |
WONG L H, CHOO K H A. Evolutionary dynamics of transposable elements at the centromere. Trends in Genetics, 2004, 20(12): 611-616. doi: 10.1016/j.tig.2004.09.011.
doi: 10.1016/j.tig.2004.09.011
|
[8] |
MACAS J, KOBLÍŽKOVÁ A, NAVRÁTILOVÁ A, NEUMANN P. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene, 2009, 448(2): 198-206. doi: 10.1016/j.gene.2009.06.014.
doi: 10.1016/j.gene.2009.06.014
|
[9] |
SHARMA A, WOLFGRUBER T K, PRESTING G G. Tandem repeats derived from centromeric retrotransposons. BMC Genomics, 2013, 14: 142. doi: 10.1186/1471-2164-14-142.
doi: 10
|
[10] |
CHENG Z J, MURATA M. A centromeric tandem repeat family originating from a part of Ty3/Gypsy-retroelement in wheat and its relatives. Genetics, 2003, 164(2): 665-672. doi: 10.1093/genetics/164.2.665.
doi: 10.1093/genetics/164.2.665
|
[11] |
MILLER W J, NAGEL A, BACHMANN J, BACHMANN L.Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Molecular Biology and Evolution, 2000, 17(11): 1597-1609. doi: 10.1093/oxfordjournals.molbev.a026259.
doi: 10.1093/oxfordjournals.molbev.a026259
|
[12] |
PONTECORVO G, DE FELICE B, CARFAGNA M. A novel repeated sequence DNA originated from a Tc1-like transposon in water green frog Rana esculenta. Gene, 2000, 261(2): 205-210. doi: 10.1016/S0378-1119(00)00539-4.
doi: 10.1016/S0378-1119(00)00539-4
|
[13] |
KAPITONOV V V, HOLMQUIST G P, JURKA J. L1 repeat is a basic unit of heterochromatin satellites in cetaceans. Molecular Biology and Evolution, 1998, 15(5): 611-612. doi: 10.1093/oxfordjournals.molbev.a025963.
doi: 10.1093/oxfordjournals.molbev.a025963
|
[14] |
GAFFNEY P M, PIERCE J C, MACKINLEY A G, TITCHEN D A, GLENN W K. Pearl, a novel family of putative transposable elements in bivalve mollusks. Journal of Molecular Evolution, 2003, 56(3): 308-316. doi: 10.1007/s00239-002-2402-5.
doi: 10.1007/s00239-002-2402-5
|
[15] |
BOVINE G S, ANALYSIS C, ELSIK C G, GIBBS R A, MUZUNY D M, WEINSTOCK G M, AELSON D L, EICHLER E E, ELNITSKI L, GUIGO R, et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science, 2009, 324(5926): 522-8.
doi: 10.1126/science.1169588
|
[16] |
WANG K, WANG L Z, LENSTRA J A, JIAN J B, YANG Y Z, HU Q J, LAI D Y, QIU Q, MA T, DU Z, ABBOTT R, LIU J Q. The genome sequence of the wisent (Bison bonasus). GigaScience, 2017, 6(4): gix016. doi: 10.1093/gigascience/gix016.
doi: 10.1093/gigascience/gix016
|
[17] |
WANG M S, ZENG Y, WANG X, NIE W H, WANG J H, SU W T, OTECKO N O, XIONG Z J, WANG S, QU K X, YAN S Q, YANG M M, WANG W, DONG Y, WU D D, ZHANG Y P. Draft genome of the gayal, Bos frontalis. GigaScience, 2017, 6(11): gix094. doi: 10.1093/gigascience/gix094.
doi: 10.1093/gigascience/gix094
|
[18] |
GLANZMANN B, MÖLLER M, LE ROEX N, TROMP G, HOAL E G, VAN HELDEN P D. The complete genome sequence of the African buffalo (Syncerus caffer). BMC Genomics, 2016, 17(1): 1001. doi: 10.1186/s12864-016-3364-0.
doi: 10.1186/s12864-016-3364-0
|
[19] |
BENSON G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573-580. doi: 10.1093/nar/27.2.573.
doi: 10.1093/nar/27.2.573
|
[20] |
MELTERS D P, BRADNAM K R, YOUNG H A, TELIS N, MAY M R, RUBY J G, SEBRA R, PELUSO P, EID J, RANK D, GARCIA J F, DERISI J L, SMITH T, TOBIAS C, ROSS-IBARRA J, KORF I, CHAN S W L. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 2013, 14(1): R10. doi: 10.1186/gb-2013-14-1-r10.
doi: 10
|
[21] |
AMES D, MURPHY N, HELENTJARIS T, SUN N N, CHANDLER V. Comparative analyses of human single- and multilocus tandem repeats. Genetics, 2008, 179(3): 1693-1704. doi: 10.1534/genetics.108.087882.
doi: 10.1534/genetics.108.087882
|
[22] |
MEŠTROVIĆ N, MRAVINAC B, PAVLEK M, VOJVODA-ZELJKO T, ŠATOVIĆ E, PLOHL M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Research, 2015, 23(3): 583-596. doi: 10.1007/s10577-015-9483-7.
doi: 10.1007/s10577-015-9483-7
|
[23] |
VONDRAK T, ROBLEDILLO L Á, NOVÁK P, KOBLÍŽKOVÁ A, NEUMANN P, MACAS J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. The Plant Journal: for Cell and Molecular Biology, 2020, 101(2): 484-500. doi: 10.1111/tpj.14546.
doi: 10.1111/tpj.14546
|
[24] |
LÓPEZ-FLORES I, GARRIDO-RAMOS M A. The repetitive DNA content of eukaryotic genomes. Genome Dynamics, 2012, 7: 1-28. doi: 10.1159/000337118.
doi: 10.1159/000337118
|
[25] |
CHENG Z K, DONG F G, LANGDON T, OUYANG S, BUELL C R, GU M H, BLATTNER F R, JIANG J M. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. The Plant Cell, 2002, 14(8): 1691-1704. doi: 10.1105/tpc.003079.
doi: 10.1105/tpc.003079
|
[26] |
ZHONG C X, MARSHALL J B, TOPP C, MROCZEK R, KATO A, NAGAKI K, BIRCHLER J A, JIANG J M, DAWE R K. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. The Plant Cell, 2002, 14(11): 2825-2836. doi: 10.1105/tpc.006106.
doi: 10.1105/tpc.006106
|
[27] |
LIU Z, YUE W, LI D Y, WANG R R C, KONG X Y, LU K, WANG G X, DONG Y S, JIN W W, ZHANG X Y. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma, 2008, 117(5): 445-456. doi: 10.1007/s00412-008-0161-9.
doi: 10.1007/s00412-008-0161-9
|
[28] |
LANGDON T, SEAGO C, JONES R N, OUGHAM H, THOMAS H, FORSTER J W, JENKINS G. De novo evolution of satellite DNA on the rye B chromosome. Genetics, 2000, 154(2): 869-884. doi: 10.1093/genetics/154.2.869.
doi: 10.1093/genetics/154.2.869
|
[29] |
GONG Z Y, WU Y F, KOBLÍŽKOVÁ A, TORRES G A, WANG K, IOVENE M, NEUMANN P, ZHANG W L, NOVÁK P, BUELL C R, MACAS J, JIANG J M. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. The Plant Cell, 2012, 24(9): 3559-3574. doi: 10.1105/tpc.112.100511.
doi: 10.1105/tpc.112.100511
|
[30] |
HIKOSAKA A, KAWAHARA A. Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: A new mechanism for creating simple sequence repeats. Journal of Molecular Evolution, 2004, 59(6): 738-746. doi: 10.1007/s00239-004-2664-1.
doi: 10.1007/s00239-004-2664-1
|
[31] |
PLOHL M, MEŠTROVIĆ N, MRAVINAC B. Satellite DNA evolution. Genome Dynamics, 2012, 7:126-152. doi: 10.1159/000337122.
doi: 10.1159/000337122
|
[32] |
MCGURK M P, BARBASH D A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Research, 2018, 28(5): 714-725. doi: 10.1101/gr.231472.117.
doi: 10.1101/gr.231472.117
|
[33] |
KAPITONOV V V, JURKA J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica, 1999, 107(1/2/3): 27-37.
doi: 10.1023/A:1004030922447
|
[34] |
SMIT A F A, RIGGS A D. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Research, 1995, 23(1): 98-102. doi: 10.1093/nar/23.1.98.
doi: 10.1093/nar/23.1.98
|
[35] |
DAMIANI G, FLORIO S, PANELLI S, CAPELLI E, CUCCIA M. The Bov-A2 retroelement played a crucial role in the evolution of ruminants. Rivista Di Biologia, 2008, 101(3): 375-404.
|
[36] |
YANG H P, BARBASH D A. Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biology, 2008, 9(2): R39. doi: 10.1186/gb-2008-9-2-r39.
doi: 10
|
[37] |
THOMAS J, VADNAGARA K, PRITHAM E J. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mobile DNA, 2014, 5: 18. doi: 10.1186/1759-8753-5-18.
doi: 10.1186/1759-8753-5-18
|
[38] |
LUCHETTI A. terMITEs: miniature inverted-repeat transposable elements (MITEs) in The Termite Genome (Blattodea: Termitoidae). Molecular Genetics and Genomics: MGG, 2015, 290(4): 1499-1509. doi: 10.1007/s00438-015-1010-1.
doi: 10.1007/s00438-015-1010-1
|
[39] |
NOMA K. Tnat1 and Tnat 2 from Arabidopsis thaliana: novel transposable elements with tandem repeat sequences. DNA Research, 2000, 7(1): 1-7. doi: 10.1093/dnares/7.1.1.
doi: 10.1093/dnares/7.1.1
|
[40] |
SCALVENZI T, POLLET N. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA. Molecular Phylogenetics and Evolution, 2014, 81: 1-9. doi: 10.1016/j.ympev.2014.08.014.
doi: 10.1016/j.ympev.2014.08.014
|
[41] |
DIAS G B, SVARTMAN M, DELPRAT A, RUIZ A, KUHN G C S. Tetris is a foldback transposon that provided the building blocks for an emerging satellite DNA of Drosophila virilis. Genome Biology and Evolution, 2014, 6(6): 1302-1313. doi: 10.1093/gbe/evu108.
doi: 10.1093/gbe/evu108
|
[42] |
MARTÍNEZ-IZQUIERDO J A, GARCÍA-MARTÍNEZ J, VICIENT C M. What makes Grande1 retrotransposon different? Genetica, 1997, 100(1/2/3): 15-28.
doi: 10.1023/A:1018332218319
|