中国农业科学 ›› 2022, Vol. 55 ›› Issue (7): 1433-1444.doi: 10.3864/j.issn.0578-1752.2022.07.014
收稿日期:
2021-07-09
接受日期:
2021-10-09
出版日期:
2022-04-01
发布日期:
2022-04-18
通讯作者:
李欣
作者简介:
张业军, E-mail: 基金资助:
ZHANG YeJun(),ZHANG DeQuan,HOU ChengLi,BAI YuQiang,REN Chi,WANG Xu,LI Xin()
Received:
2021-07-09
Accepted:
2021-10-09
Online:
2022-04-01
Published:
2022-04-18
Contact:
Xin LI
摘要:
【目的】研究肌球蛋白重链和肌动蛋白磷酸化对其乙酰化水平、肌动球蛋白解离及ATP酶活性的影响,为通过调控磷酸化水平改善肉品嫩度提供理论依据。【方法】以羊背最长肌为材料制备肌肉匀浆液,采用碱性磷酸酶抑制剂(抑制去磷酸化)和蛋白激酶抑制剂(抑制磷酸化)调控其磷酸化水平,在4℃分别孵育0、0.5、4、12、24、48和72 h,利用SDS-PAGE电泳和荧光染色、蛋白质免疫印迹、ATP酶活性测定试剂盒分析蛋白质磷酸化水平、乙酰化水平、肌动球蛋白解离程度和ATP酶活性随孵育时间的变化;利用分子动力学模拟分析肌球蛋白重链和肌动蛋白磷酸化对肌动球蛋白结构的影响。【结果】碱性磷酸酶抑制剂处理组中肌球蛋白重链磷酸化水平在孵育4、12和72 h时显著高于对照组和蛋白激酶抑制处理组(P<0.05),肌动蛋白磷酸化水平在孵育4、12、24、48和72 h时显著高于对照组和蛋白激酶抑制处理组(P<0.05),表明肌球蛋白重链和肌动蛋白发生去磷酸化反应被碱性磷酸酶抑制剂所抑制。碱性磷酸酶抑制剂处理组中肌动蛋白乙酰化水平在孵育4、12、24、48和72 h时显著低于蛋白激酶抑制组(P<0.05),肌球蛋白重链乙酰化水平呈无规律变化,表明肌动蛋白磷酸化抑制其乙酰化,肌球蛋白重链磷酸化对其乙酰化影响无明显规律。分子动力学结果表明,肌球蛋白重链第2、3、54位丝氨酸等位点和肌动蛋白第54位丝氨酸、第55位酪氨酸等位点磷酸化增加了肌动球蛋白结构的总能量、势能和动能,降低了键能,导致肌动球蛋白结构变得不稳定。在0—72 h孵育过程中,碱性磷酸酶抑制剂处理组的肌动球蛋白解离程度始终高于蛋白激酶抑制处理组,ATP酶活性低于蛋白激酶抑制处理组(P<0.05),表明肌球蛋白重链和肌动蛋白磷酸化促进肌动球蛋白解离。【结论】肌球蛋白重链磷酸化直接促进肌动球蛋白解离,肌动蛋白磷酸化通过抑制其自身乙酰化促进肌动球蛋白解离。
张业军,张德权,侯成立,摆玉蔷,任驰,王旭,李欣. 蛋白质磷酸化对肌动球蛋白解离及其乙酰化水平的影响[J]. 中国农业科学, 2022, 55(7): 1433-1444.
ZHANG YeJun,ZHANG DeQuan,HOU ChengLi,BAI YuQiang,REN Chi,WANG Xu,LI Xin. Effects of Protein Phosphorylation on the Dissociation and Acetylation Level of Actomyosin[J]. Scientia Agricultura Sinica, 2022, 55(7): 1433-1444.
表1
本研究所用肌球蛋白重链和肌动蛋白磷酸化位点"
蛋白 Protein | 磷酸化位点 Location of phosphorylation sites |
---|---|
肌动蛋白 Actin | S54, Y55, S62, Y93, T150, T151, Y168, Y171, Y200, T231, S234, S235, S236, S237, S241, T251, S325, S370 |
肌球蛋白重链 Myosin heavy chain | S2, S3, S54, T257, T258, T381, Y389, T415, Y424, T452, Y556, T684, S732, S742, T790, S814, Y820, S846, T885, S897, T915, S952, T964, T983, T992, T997, T1023, T1025, T1029, S1041 |
[1] |
HOLMAN B W B, DAMIAN C, KILGANNON A K, HOPKINS D L. Using shear force, sarcomere length, particle size, collagen content, and protein solubility metrics to predict consumer acceptance of aged beef tenderness. Journal of Texture Studies, 2020, 51(4):559-566. doi: 10.1111/jtxs.12523.
doi: 10.1111/jtxs.12523 |
[2] |
CASSENS A M, ARNOLD A N, MILLER R K, GEHRING K B, SAVELL J W. Impact of elevated aging temperatures on retail display, tenderness, and consumer acceptability of beef. Meat Science, 2018, 146:1-8. doi: 10.1016/j.meatsci.2018.07.024.
doi: 10.1016/j.meatsci.2018.07.024 |
[3] |
TAYLOR R G, GEESINK G H, THOMPSON V F, KOOHMARAIE M, GOLL D E. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 1995, 73(5):1351-1367. doi: 10.2527/1995.7351351x.
doi: 10.2527/1995.7351351x |
[4] |
WANG D Y, ZHANG M H, DENG S Y, XU W M, LIU Y, GENG Z M, SUN C, BIAN H, LIU F. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle. Food Chemistry, 2016, 197:340-344.
doi: 10.1016/j.foodchem.2015.10.132 |
[5] |
OKITANI A, ICHINOSE N, KOZA M, YAMANAKA K, MIGITA K, MATSUISHI M. AMP and IMP dissociate actomyosin into actin and myosin. Bioscience, Biotechnology, and Biochemistry, 2008, 72(8):2005-2011. doi: 10.1271/bbb.80128.
doi: 10.1271/bbb.80128 |
[6] |
OKITANI A, ICHINOSE N, ITOH J, TSUJI Y, ONEDA Y, HATAE K, MIGITA K, MATSUISHI M. Liberation of actin from actomyosin in meats heated to 65℃. Meat Science, 2009, 81(3):446-450. doi: 10.1016/j.meatsci.2008.09.008.
doi: 10.1016/j.meatsci.2008.09.008 |
[7] |
BHAT Z F, MORTON J D, MASON S L, BEKHIT A E D A. Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 2018, 7(3):196-204. doi: 10.1016/j.fshw.2018.08.002.
doi: 10.1016/j.fshw.2018.08.002 |
[8] |
PERRIE W T, SMILLIE L B, PERRY S V. A phosphorylated light chain component of myosin from skeletal muscle. Cold Spring Harbor Symposia on Quantitative Biology, 1973, 37:17-18. doi: 10.1101/sqb.1973.037.01.006.
doi: 10.1101/sqb.1973.037.01.006 |
[9] |
ALAMO L, WRIGGERS W, PINTO A, BÁRTOLI F, SALAZAR L, ZHAO F Q, CRAIG R, PADRÓN R. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. Journal of Molecular Biology, 2008, 384(4):780-797. doi: 10.1016/j.jmb.2008.10.013.
doi: 10.1016/j.jmb.2008.10.013 |
[10] |
BRITO R, ALAMO L, LUNDBERG U, GUERRERO J R, PINTO A, SULBARÁN G, GAWINOWICZ M A, CRAIG R, PADRÓN R. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. Journal of Molecular Biology, 2011, 414(1):44-61. doi: 10.1016/j.jmb.2011.09.017.
doi: 10.1016/j.jmb.2011.09.017 |
[11] |
KASZA K E, FARRELL D L, ZALLEN J A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. PNAS, 2014, 111(32):11732-11737. doi: 10.1073/pnas.1400520111.
doi: 10.1073/pnas.1400520111 |
[12] | 陈立娟, 李欣, 李铮, 李培迪, 李仲文, 张德权. 蛋白质磷酸化调控羊肉肌原纤维蛋白的功能. 中国农业科学, 2016, 49(7):1360-1370. |
CHEN L J, LI X, LI Z, LI P D, LI Z W, ZHANG D Q. Protein phosphorylation on the function of myofibrillar proteins in mutton muscle. Scientia Agricultura Sinica, 2016, 49(7):1360-1370. (in Chinese) | |
[13] |
张艳, 李欣, 李铮, 李蒙, 刘永峰, 张德权. 冰温贮藏对羊肉中蛋白质磷酸化水平的影响. 中国农业科学, 2016, 49(22):4429-4440. doi: 10.3864/j.issn.0578-1752.2016.22.015.
doi: 10.3864/j.issn.0578-1752.2016.22.015 |
ZHANG Y, LI X, LI Z, LI M, LIU Y F, ZHANG D Q. Effects of controlled freezing point storage on the protein phosphorylation level. Scientia Agricultura Sinica, 2016, 49(22):4429-4440. doi: 10.3864/j.issn.0578-1752.2016.22.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.015 |
|
[14] |
李蒙, 李铮, 李欣, 杜曼婷, 宋璇, 张德权. 磷酸化水平对肌红蛋白稳定性的影响. 中国农业科学, 2017, 50(22):4382-4388. doi: 10.3864/j.issn.0578-1752.2017.22.014.
doi: 10.3864/j.issn.0578-1752.2017.22.014 |
LI M, LI Z, LI X, DU M T, SONG X, ZHANG D Q. Effect of phosphorylation level on myoglobin stability. Scientia Agricultura Sinica, 2017, 50(22):4382-4388. doi: 10.3864/j.issn.0578-1752.2017.22.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.22.014 |
|
[15] |
高星, 李欣, 李铮, 丁武, 张德权. 肌动球蛋白磷酸化对其解离的影响. 食品科学, 2017, 38(9):21-26. doi: 10.7506/spkx1002-6630-201709004.
doi: 10.7506/spkx1002-6630-201709004 |
GAO X, LI X, LI Z, DING W, ZHANG D Q. Effect of phosphorylation on actomyosin dissociation. Food Science, 2017, 38(9):21-26. doi: 10.7506/spkx1002-6630-201709004. (in Chinese)
doi: 10.7506/spkx1002-6630-201709004 |
|
[16] |
GAO X, LI X, LI Z, DU M T, ZHANG D Q. Dephosphorylation of myosin regulatory light chain modulates actin-myosin interaction adverse to meat tenderness. International Journal of Food Science and Technology, 2017, 52(6):1400-1407.
doi: 10.1111/ijfs.13343 |
[17] |
JIANG S W, LIU Y S, SHEN Z L, ZHOU B, SHEN Q W. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. Journal of Proteomics, 2019, 205:103412. doi: 10.1016/j.jprot.2019.103412.
doi: 10.1016/j.jprot.2019.103412 |
[18] |
ZHOU B, SHEN Z L, LIU Y S, WANG C T, SHEN Q W. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chemistry, 2019, 293:396-407. doi: 10.1016/j.foodchem.2019.04.122.
doi: 10.1016/j.foodchem.2019.04.122 |
[19] |
HOFMANN T G, MÖLLER A, SIRMA H, ZENTGRAF H, TAYA Y, DRÖGE W, WILL H, SCHMITZ M L. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nature Cell Biology, 2002, 4(1):1-10. doi: 10.1038/ncb715.
doi: 10.1038/ncb715 |
[20] |
LI Z, BRIDGES B, OLSON J, WEINMAN S A. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3. Oncogene, 2017, 36(13):1887-1898. doi: 10.1038/onc.2016.359.
doi: 10.1038/onc.2016.359 |
[21] |
陈立娟, 李欣, 杨扬, 陈丽, 倪娜, 张德权. 不同嫩度羊肉肌浆蛋白质磷酸化水平随宰后成熟时间变化的研究. 现代食品科技, 2015, 31(4):95-101. doi: 10.13982/j.mfst.1673-9078.2015.4.016.
doi: 10.13982/j.mfst.1673-9078.2015.4.016 |
CHEN L J, LI X, YANG Y, CHEN L, NI N, ZHANG D Q. Analyzing the changes in sarcoplasmic protein phosphorylation with respect to postmortem ageing times in mutton with different levels of tenderness. Modern Food Science and Technology, 2015, 31(4):95-101. doi: 10.13982/j.mfst.1673-9078.2015.4.016. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2015.4.016 |
|
[22] |
高星, 李欣, 李铮, 杜曼婷, 张彩霞, 张德权, 丁武. 宰后肌肉中肌球蛋白磷酸化调控肌动球蛋白解离作用机制. 中国农业科学, 2016, 49(16):3199-3207. doi: 10.3864/j.issn.0578-1752.2016.16.013.
doi: 10.3864/j.issn.0578-1752.2016.16.013 |
GAO X, LI X, LI Z, DU M T, ZHANG C X, ZHANG D Q, DING W. The mechanism of myosin phosphorylation regulating actomyosin dissociation of skeletal muscle during postmortem. Scientia Agricultura Sinica, 2016, 49(16):3199-3207. doi: 10.3864/j.issn.0578-1752.2016.16.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.16.013 |
|
[23] |
CHEN X R, WANG X T, HAO M Q, ZHOU Y H, CUI W Q, XING X X, XU C G, BAI J W, LI Y H. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus. Frontiers in Chemistry, 2017, 5:98. doi: 10.3389/fchem.2017.00098.
doi: 10.3389/fchem.2017.00098 |
[24] |
LIU M S, WEI Y C, LI X, QUEK S Y, ZHAO J, ZHONG H Z, ZHANG D Q, LIU Y F. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality. Meat Science, 2018, 141:103-111. doi: 10.1016/j.meatsci.2018.01.001.
doi: 10.1016/j.meatsci.2018.01.001 |
[25] |
SCHIAFFINO S, REGGIANI C. Fiber types in mammalian skeletal muscles. Physiological Reviews, 2011, 91(4):1447-1531. doi: 10.1152/ physrev.00031.2010.
doi: 10.1152/ physrev.00031.2010 |
[26] |
KARLSSON A H, KLONT R E, FERNANDEZ X. Skeletal muscle fibres as factors for pork quality. Livestock Production Science, 1999, 60(2/3):255-269. doi: 10.1016/S0301-6226(99)00098-6.
doi: 10.1016/S0301-6226(99)00098-6 |
[27] | 尹靖东. 动物肌肉生物学与肉品科学. 北京: 中国农业大学出版社, 2011. |
YIN J D. Animal Muscle Biology and Meat Quality. Beijing: China Agricultural University Press, 2011. (in Chinese) | |
[28] | 李胜杰, 徐幸莲, 周光宏. 宰后肌动球蛋白解离对肉品嫩度的影响研究进展. 食品科学, 2010, 31(21):442-445. |
LI S J, XU X L, ZHOU G H. Research advances in the influence of actomyosin dissociation on postharvest meat tenderness. Food Science, 2010, 31(21):442-445. (in Chinese) | |
[29] |
EGELHOFF T T, LEE R J, SPUDICH J A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell, 1993, 75(2):363-371.
doi: 10.1016/0092-8674(93)80077-R |
[30] |
NORWOOD TORO L E, WANG Y R, CONDEELIS J S, JONES J G, BACKER J M, BRESNICK A R. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Experimental Cell Research, 2018, 370(2):273-282. doi: 10.1016/j.yexcr.2018.06.028.
doi: 10.1016/j.yexcr.2018.06.028 |
[31] |
CHEN L J, LI X, NI N, LIU Y, CHEN L, WANG Z Y, SHEN Q W, ZHANG D Q. Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness. Journal of the Science of Food and Agriculture, 2016, 96(5):1474-1483. doi: 10.1002/jsfa.7244.
doi: 10.1002/jsfa.7244 |
[32] | LIU X, SHU S, HONG M S S, LEVINE R L, KORN E D. Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37):13694-13699. |
[33] | GANNON J, STAUNTON L, O'CONNELL K, DORAN P, OHLENDIECK K. Phosphoproteomic analysis of aged skeletal muscle. International Journal of Molecular Medicine, 2008, 22(1):33-42. |
[34] |
PAPAKONSTANTI E A, STOURNARAS C. Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Molecular Biology of the Cell, 2002, 13(8):2946-2962. doi: 10.1091/mbc.02-01-0599.
doi: 10.1091/mbc.02-01-0599 |
[35] |
CARLIER M F, PANTALONI D. Control of actin dynamics in cell motility. Journal of Molecular Biology, 1997, 269(4):459-467. doi: 10.1006/jmbi.1997.1062.
doi: 10.1006/jmbi.1997.1062 |
[36] |
HOWARD P K, SEFTON B M, FIRTEL R A. Tyrosine phosphorylation of actin in dictystelium associated with cell-shape changes. Science, 1993, 259(5092):241-244.
doi: 10.1126/science.7678470 |
[37] |
KARPLUS M. Molecular dynamics simulations of biomolecules. Accounts of Chemical Research, 2002, 35(6):321-323. doi: 10.1021/ar020082r.
doi: 10.1021/ar020082r |
[38] |
ZHANG Y J, LI X, ZHANG D Q, REN C, BAI Y Q, IJAZ M, WANG X, ZHAO Y X. Acetylation of sarcoplasmic and myofibrillar proteins were associated with ovine meat quality attributes at early postmortem. Food Science of Animal Resources, 2021, 41(4):650-663. doi: 10.5851/kosfa.2021.e22.
doi: 10.5851/kosfa.2021.e22 |
[39] |
HABIBIAN J, FERGUSON B S. The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart. International Journal of Molecular Sciences, 2018, 20(1):102. doi: 10.3390/ijms20010102.
doi: 10.3390/ijms20010102 |
[40] |
SAMANT S A, PILLAI V B, SUNDARESAN N R, SHROFF S G, GUPTA M P. Histone deacetylase 3 (HDAC3)-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. The Journal of Biological Chemistry, 2015, 290(25):15559-15569. doi: 10.1074/jbc.M115.653048.
doi: 10.1074/jbc.M115.653048 |
[41] |
VISWANATHAN M C, BLICE-BAUM A C, SCHMIDT W, FOSTER D B, CAMMARATO A. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance. Frontiers in Physiology, 2015, 6:116. doi: 10.3389/fphys.2015.00116.
doi: 10.3389/fphys.2015.00116 |
[42] | SCHMIDT W, VISWANATHAN M, FOSTER D B, CAMMARATO A. Acetylation of k326 and k328 on actin boosts contractile properties of muscle in vitro and in vivo. Biophysical Journal, 2017, 112(3):483a. |
[43] | SCHMIDT W, VISWANATHAN M, BLICE-BAUM A C, FOSTER D B, CAMMARATO A. Pseudo-acetylation of actin residues k326 and k328 disrupts drosophila flight performance and muscle structure. Biophysical Journal, 2015, 108(2):421a-422a. |
[44] | SCHMIDT W M, FOSTER D B, CAMMARATO A. Acetylation of actin k328 contributes to a loss in tropomyosin-mediated inhibition of myosin binding. Biophysical Journal, 2019, 116(3):457a. |
[45] |
ZHANG Y J, LI X, ZHANG D Q, BAI Y Q, WANG X. Effects of acetylation on dissociation and phosphorylation of actomyosin in postmortem ovine muscle during incubation at 4℃ in vitro. Food Chemistry, 2021, 356:129696. doi: 10.1016/j.foodchem.2021.129696.
doi: 10.1016/j.foodchem.2021.129696 |
[1] | 张宗源,蒋咏梅,章文贤. 组蛋白乙酰化对灵芝生长、灵芝多糖和灵芝酸生物合成的影响[J]. 中国农业科学, 2020, 53(3): 632-641. |
[2] | 冯婵婧,孙广正,王阳,马青. 番茄ShARPC5抗白粉病功能分析[J]. 中国农业科学, 2020, 53(1): 65-73. |
[3] | 李爽,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂工蜂上颚腺磷酸化蛋白质组分析[J]. 中国农业科学, 2017, 50(23): 4656-4670. |
[4] | 李蒙,李铮,李欣,杜曼婷,宋璇,张德权. 磷酸化水平对肌红蛋白稳定性的影响[J]. 中国农业科学, 2017, 50(22): 4382-4388. |
[5] | 苑克俊,程来亮,牛庆霖,王江勇. 着色与非着色苹果品种中磷酸化蛋白质的鉴定与分析[J]. 中国农业科学, 2016, 49(8): 1530-1539. |
[6] | 陈立娟,李 欣,李 铮,李培迪,李仲文,张德权. 蛋白质磷酸化调控羊肉肌原纤维蛋白的功能[J]. 中国农业科学, 2016, 49(7): 1360-1370. |
[7] | 张 艳,李 欣,李 铮,李 蒙,刘永峰,张德权. 冰温贮藏对羊肉中蛋白质磷酸化水平的影响[J]. 中国农业科学, 2016, 49(22): 4429-4440. |
[8] | 高 星,李 欣,李 铮,杜曼婷,张彩霞,张德权,丁 武. 宰后肌肉中肌球蛋白磷酸化调控肌动球蛋白解离作用机制[J]. 中国农业科学, 2016, 49(16): 3199-3207. |
[9] | 吕晓苏,李宇轩,苗 英,陈良珂,沈元月,秦 岭,邢 宇. 草莓果实不同发育时期的蛋白磷酸化水平[J]. 中国农业科学, 2016, 49(10): 1946-1959. |
[10] | 彭小燕,木泰华,孙红男,张苗,于明,何伟忠. 超高压处理对甜菜果胶结构及乳化特性的影响[J]. 中国农业科学, 2015, 48(7): 1405-1414. |
[11] | 孙玉静,马文秀,蔡璐璐,刘良,邹丽芳,陈功友. 烟草和水稻中水稻条斑病菌过敏反应激发子SsbX互作因子的鉴定[J]. 中国农业科学, 2015, 48(4): 683-694. |
[12] | 陈洁, 陈宏鑫, 姚琼, 张文庆. 甜菜夜蛾UAP的克隆、时空表达及RNAi研究[J]. 中国农业科学, 2014, 47(7): 1351-1361. |
[13] | 鲁小山12, 韩宾2, 张兰2, 冯毛2, 房宇2, 李荣丽2, 周天娥12, 李建科2. 王浆高产蜜蜂咽下腺磷酸化蛋白质组分析[J]. 中国农业科学, 2013, 46(23): 5050-5057. |
[14] | 周天娥, 房宇, 冯毛, 韩宾, 张兰, 李荣丽, 李建科. 中华蜜蜂与意大利蜜蜂雄蜂胚胎发育差异蛋白质组 与磷酸化蛋白质组分析[J]. 中国农业科学, 2013, 46(2): 394-408. |
[15] | 叶子, 黄聪聪, 于荣. 保卫细胞微管骨架参与蛋白丝氨酸/苏氨酸磷酸化调节的气孔运动[J]. 中国农业科学, 2012, 45(21): 4351-4360. |
|