[1] Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences, 2006, 27(11): 587-593.
[2] He F, Pan Q H, Shi Y, Duan C Q. Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules, 2008, 13(10): 2674-2703.
[3] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5): 236-242.
[4] Feeny P. Seasonal changes in Oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 1970, 51(4): 565-581.
[5] Bais H P, Vepachedu R, Gilroy S, Callaway R M, Vivanco J M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 2003, 301(5638): 1377-1380.
[6] rior R L, Gu L. Occurrence and biological significant of proanthocyanidins in the american diet. Phytochemistry, 2005, 66(18): 2264-2280.
[7] Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn) pericarp. International Immunopharmacology, 2007, 7(2): 162-166.
[8] Rao L J, Yada H, Ono H, Ohnishikameyama M, Yoshida M. Occurrence of antioxidant and radical scavenging proanthocyanidins from the Indian minor spice nagkesar (Mammea longifolia planch and triana syn). Bioorganic & Medicinal Chemistry, 2004, 12(1): 31-36.
[9] Subarnas A, Wagner H. Analgesic and anti-inflammatory activity of the proanthocyanidin shellegueain A from Polypodium feei METT. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2000, 7(5): 401-405.
[10] Sato M, Maulik G, Ray P S, Bagchi D, Das D K. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. Journal of Molecular & Cellular Cardiology, 1999, 31(6): 1289-1297.
[11] Sano T, Oda E, Yamashita T, Naemura A, Ijiri Y, Yamakoshi J, Yamamoto J. Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape seed. Thrombosis Research, 2005, 115(1/2): 115-121.
[12] Brown M H, Paulsen I T, Skurray R A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Molecular Microbiology, 1999, 31(1): 394-395.
[13] Morita M, Shitan N, Sawada K, Van Montagu M C E, Inze D, Rischer H, Goossens A, Oksman-Caldentey K M, Moriyama Y, Yazaki K. NorM, a Putative Multidrug Efflux Protein, of Vibrio parahaemolyticus and Its Homolog in Escherichia coli. Antimicrobial Agents & Chemotherapy, 1998, 42(7): 1778-1782.
[14] Li L, He Z, Pandey G K, Tsuchiya T, Luanet S. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. Journal of Biological Chemistry, 2002, 277(7): 5360-5368.
[15] 沈知临, 许磊, 陈文, 吴楠, 蔡永萍, 林毅, 高俊山. 亚洲棉和雷蒙德氏棉MATE基因家族生物信息学及其同源基因在陆地棉中的表达分析. 棉花学报, 2016, 562(3): 215-226.
Shen Z L, Xu L, Chen W, Wu N, Cai Y P, Lin Y, Gao J S. Bioinformatic analysis of the multidrug and toxic compound extrusion gene family in Gossypium arboreum and Gossypium raimondii, and expression of orthologs in Gossypium hirsutum. Cotton Science,2016, 562(3): 215-226. (in Chinese)
[16] Takanashi K, Shitan N, Yazaki K. The multidrug and toxic compound extrusion (MATE) family in plants. Plant Tissue Culture Letters, 2014, 31(5): 417-430.
[17] Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell, 2007, 19(6): 2023-2038.
[18] Sivaguru M, Liu J, Kochian L V. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant Journal for Cell & Molecular Biology, 2013, 76(2): 297-307.
[19] Magalhaes J V, Liu J, Guimarães C T, Lana U G, Alves V M, Wang Y H, Schaffert R E, Hoekenga O A,Piñeros M A, Shaff J E, Klein P E, Carneiro N P, Coelho C M, Trick H N, Kochian L V. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 2007, 39(9): 1156-1161.
[20] Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma J F. An aluminum- activated citrate transporter in barley. Plant & Cell Physiology, 2007, 48(8): 1081-1091.
[21] Durrett T P, Gassmann W, Rogers E E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 2007, 144(1): 197-205.
[22] Gao J, Wang T T, Liu M X, Liu J, Zhang Z W. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. Plos One, 2017, 12(12):e0189672.
[23] Lei G J, Yokosho K, Yamaji N, Ma J F. Two MATE transporters with different subcellular localization are involved in Al tolerance in buckwheat. Plant & Cell Physiology, 2017, 58(12): 2179-2189.
[24] Gao J S, Wu N, Shen Z L, Lv K, Qian S H, Guo N, Sun X, Cai Y P, Lin Y. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.). Gene, 2016, 576(2): 763-769.
[25] Wang L, Bei X, Gao J, Li Y, Hu Y. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. Bmc Plant Biology, 2016, 16(1): 207-225.
[26] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 2006, 57(1): 405-430.
[27] Zhao J, Dixon R A. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell, 2009, 21(8): 2323-2340.
[28] Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R. Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. Plant Biology, 2011, 13(1): 42-50.
[29] He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee T H, Wang X, Cai Q, Li D, Lu M, Liao S, Luo G, He R, Tan X, Xu Y, Li T, Zhao A, Jia L, Fu Q, Zeng Q, Gao C, Ma B, Liang J, Wang X, Shang J, Song P, Wu H, Fan L, Wang Q, Shuai Q, J Zhu J, Wei C, Keyan ZS, Jin D, Wang J, Liu T, Yu M, Tang C, Wang Z, Dai F, Chen J, Y Liu Y, Zhao S, Lin T, Zhang S, J Wang J, Wang J, Yang H, Yang G, Wang J, Paterson A H, Xia Q, Ji D, Xiang Z. Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 2013, 4(9): 2445-2454.
[30] Pérezdíaz R, Ryngajllo M, Pérezdíaz J, Peña-Cortés H, Casaretto J A, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Reports, 2014, 33(7): 1147-1159.
[31] Zielińska D, Turemko M, Kwiatkowski J, Zieliński H. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules, 2012, 17(8): 9668-9682.
[32] Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acids is related to aluminium resistance during relatively long‐term exposure to aluminium stress. Physiologia Plantarum, 2010, 103(2): 209-214.
[33] Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 2001, 6(6): 273-278.
[34] Ma J. Detoxifying aluminum with buckwheat. Nature, 1997, 390(6660): 569-570. |