[1] Frank D A. Evidence for top predator control of a grazing ecosystem. Oikos, 2008, 117(11): 1718-1724.
[2] Hawlena D, Schmitz O J. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15503-15507.
[3] Abrams P A. Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. The American Naturalist, 1995, 146(1): 112-134.
[4] Schmitz O J. Direct and indirect effects of predation and predation risk in old field interaction webs. The American Naturalist, 1998, 151(4): 327-342.
[5] Werner E E, Peacor S D. A review of trait-mediated indirect interactions in ecological communities. Ecology, 2003, 84(5): 1083-1100.
[6] Nelson E H, Matthews C E, Rosenheim J A. Predators reduce prey population growth by inducing changes in prey behavior. Ecology, 2004, 85(7): 1853-1858.
[7] Preisser E L, Bolnick D I, Benard M F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology, 2005, 86(2): 501-509.
[8] Pangle K L, Peacor S D, Johannsson O E. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology, 2007, 88(2): 402-412.
[9] Slos S, Stoks R. Predation risk induces stress proteins and reduces antioxidant defense. Functional Ecology, 2008, 22(4): 637-642.
[10] McCauley S J, Rowe L, Fortin M J. The deadly effects of “nonlethal” predators. Ecology, 2011, 92(11): 2043-2048.
[11] Peckarsky B L, Taylor B, McIntosh A R, McPeek M A, Lytle D A. Variation in mayfly size at metamorphosis as a developmental response to risk of predation. Ecology, 2001, 82(3): 740-757.
[12] Dahl J, Peckarsky B L. Developmental responses to predation risk in morphologically defended mayflies. Oecologia, 2003, 137(2): 188-194.
[13] Ball S L, Baker R L. Predator-induced life history changes: antipredator behavior costs or facultative life history shifts? Ecology, 1996, 77(4): 1116-1124.
[14] Hechtel L J, Juliano S A. Effects of a predator on prey metamorphosis: plastic responses by prey or selective mortality? Ecology, 1997, 78(3): 838-851.
[15] 李燕平, 戈峰. 龟纹瓢虫的捕食胁迫作用对连续三代果蝇发育与繁殖的影响. 昆虫知识, 2010, 47(1): 139-145.
Li Y P, Ge F. Effect of prey stress from Propylea japonica on development and fecundity of Drosophila melanogaster in successive three generations. Chinese Bulletin of Entomology, 2010, 47(1): 139-145. (in Chinese)
[16] Hawlena D, Kress H, Dufresne E R, Schmitz O J. Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Functional Ecology, 2011, 25(1): 279-288.
[17] Kunert G, Otto S, Rose U, Gershezon J, Weiser W. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters, 2005, 8(6): 596-603.
[18] Thaler J S, McArt S H, Kaplan L. Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 12075-12080.
[19] Xiong X F, Michaud J P, Li Z, Wu P X, Chu Y N, Zhang Q W, Liu X X. Chronic, predator-induced stress alters development and reproductive performance of the cotton bollworm, Helicoverpa armigera. BioControl, 2015, 60(6): 827-837.
[20] Vonesh J R, Warkentin K M. Opposite shifts in size at metamorphosis in response to larval and metamorph predators. Ecology, 2006, 87(3): 556-562.
[21] Stoks R, De Block M, McPeek M A. Alternative growth and energy storage responses to mortality threats in damselflies. Ecology Letters, 2005, 8(12): 1307-1316.
[22] Stoks R. Food stress and predator-induced stress shape developmental performance in a damsel?y. Oecologia, 2001, 127(2): 222-229.
[23] Chivers D P, Wisenden B D, Smith R J F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Animal Behaviour, 1996, 52(2): 315-320.
[24] Brodin T, Mikolajewski D J, Johansson F. Behavioural and life history effects of predator diet cues during ontogeny in damsel?y larvae. Oecologia, 2006, 148(1): 162-169.
[25] Kagawa N, Ryo K, Mugiya Y. Enhanced expression of stress protein 70 in the brains of goldfish, Carassius auratus, reared with bluegills, Lepomis macrochirus. Fish Physiology and Biochemistry, 1999, 21(2): 103-110.
[26] Pauwels K, Stoks R, De Meester L. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. Journal of Evolutionary Biology, 2005, 18(4): 867-872.
[27] Cockrem J F, Silverin B. Sight of a predator can stimulate a corticosterone response in the great tit (Parus major). General and Comparative Endocrinology, 2002, 125(2): 248-255.
[28] Barcellos L J G, Ritter F, Kreutz L C, Quevedo R M, da Silva L B, Bedin A C, Finco J, Cericato L. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture, 2007, 272(1/4): 774-778.
[29] 张青文. 有害生物综合治理学. 北京: 中国农业大学出版社, 2007.
Zhang Q W. Integrated Pest Management. Beijing: China Agricultural University Press, 2007. (in Chinese)
[30] Tabashnik B E, Carrière Y, Dennehy T J, Morin S, Sisterson M S, Roush R T, Shelton A M, Zhao J Z. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. Journal of Economic Entomology, 2003, 96(4): 1031-1038.
[31] 陈海燕, 杨亦桦, 武淑文, 杨亚军, 吴益东. 棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算. 昆虫学报, 2007, 50(1): 25-30.
Chen H Y, Yang Y H, Wu S W, Yang Y J, Wu Y D. Estimated frequency of resistance alleles to Bt toxin Cry1Ac in the field populations of Helicoverpa armigera (Hübner) from Northern China. Acta Entomologica Sinica, 2007, 50(1): 25-30. (in Chinese)
[32] Tay W T, Soria M F, Walsh T, Thomazoni D, Silvie P, Behere G T, Anderson C, Downes S. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE, 2013, 8(11): e80134.
[33] 王小艺, 沈佐锐. 异色瓢虫的应用研究概况. 昆虫知识, 2002, 39(4): 255-261.
Wang X Y, Shen Z R. Progress of applied research on multicolored Asian ladybird beetle. Entomological Knowledge, 2002, 39(4): 255-261. (in Chinese)
[34] Koch R L. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. Journal of Insect Science, 2003, 3(1): 32.
[35] Michaud J P, Olsen L E. Suitability of Asian citrus psyllid, Diaphorina citri, as prey for ladybeetles. BioControl, 2004, 49(4): 417-431.
[36] Evans E W. Lady beetles as predators of insects other than Hemiptera. Biological Control, 2009, 51(2): 255-267.
[37] Weber D C, Lundgren J G. Assessing the trophic ecology of the Coccinellidae: their roles as predators and as prey. Biological Control, 2009, 51(2): 199-214.
[38] Wu K J, Gong P Y. A new and practical artificial diet for the cotton bollworm. Entomologia Sinica, 1997, 4(3): 277-282.
[39] 杨静, 韩召军. 棉铃虫3种蜕皮相关基因的RNA干扰效应比较. 南京农业大学学报, 2014, 37(1): 81-86.
Yang J, Han Z J. Comparison of silencing effect of three ecdysis involved genes in cotton bollworm, Helicoverpa armigera. Journal of Nanjing Agricultural University, 2014, 37(1): 81-86. (in Chinese)
[40] 闫硕, 朱家林, 朱威龙, 潘李隆, 张青文, 刘小侠. 棉铃虫α-微管蛋白基因的克隆、序列分析及表达模式检测. 中国农业科学, 2013, 46(9): 1808-1817.
Yan S, Zhu J L, Zhu W L, Pan L L, Zhang Q W, Liu X X. Molecular cloning, sequence analysis and expression pattern detection of α-tubulin gene from Helicoverpa armigera (Hübner). Scientia Agricultura Sinica, 2013, 46(9): 1808-1817. (in Chinese)
[41] Yan S, Ni H, Li H T, Zhang J, Liu X X, Zhang Q W. Molecular cloning, characterization, and mRNA expression of two cryptochrome genes in Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2013, 106(1): 450-462.
[42] Yan S, Zhu J L, Zhu W L, Zhang X F, Li Z, Liu X X, Zhang Q W. The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status. PLoS ONE, 2014, 9(10): e111683.
[43] 闫硕, 刘彦君, 张馨方, 秦萌, 刘慧, 朱家林, 李贞, 张青文, 刘小侠. 棉铃虫复眼中Clock生物钟基因的昼夜表达模式. 中国农业科学, 2017, 50(19): 3733-3744.
YAN S, LIU Y J, ZHANG X F, QIN M, LIU H, ZHU J L, LI Z, ZHANG Q W, LIU X X. Daily expression of Clock gene in compound eye of Helicoverpa armigera. Scientia Agricultura Sinica, 2017, 50(19): 3733-3744. (in Chinese)
[44] YAN S, LIU Y J, ZHU J L, CUI W N, ZHANG X F, YANG Y H, LIU X M, ZHANG Q W, LIU X X. Daily expression of two circadian clock genes in compound eye of Helicoverpa armigera: evidence for peripheral tissue circadian timing. Insect Science, 2017, DOI: 10.1111/1744-7917.12541.
[45] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001,25(4): 402-408.
[46] Harvell C D. The ecology and evolution of inducible defenses. Quarterly Review of Biology, 1990, 65(3): 323-340.
[47] Lively C M, Hazel W N, Schellenberger M J, Michelson K S. Predator-induced defense: variation for inducibility in an intertidal barnacle. Ecology, 2000, 81(5): 1240-1247.
[48] Schoeppner N M, Relyea R A. Detecting small environmental differences: risk-response curves for predator-induced behavior and morphology. Oecologia, 2008, 154(4): 743-754.
[49] Schoeppner N M, Relyea R A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defences. Functional Ecology, 2009, 23(6): 1114-1121.
[50] van Uitregt V O, Hurst T P, Wilson R S. Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. Journal of Animal Ecology, 2012, 81(1): 108-115.
[51] Mangel M, Stamps J. Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evolutionary Ecology Research, 2001, 3(5): 583-593.
[52] Clinchy M, Zanette L, Boonstra R, Wingfield J C, Smith J N M. Balancing food and predator pressure induces chronic stress in songbirds. Proceedings of the Royal Society B: Biological Sciences, 2004, 271(1556): 2473-2479.
[53] Beckerman A P, Wieski K, Baird D J. Behavioural versus physiological mediation of life history under predation risk. Oecologia, 2007, 152(2): 335-343.
[54] Poledník L, ?ehulka J, Kranz A, Poledníková K, Hlavá? V, Kazihnitková H. Physiological responses of over-wintering common carp (Cyprinus carpio) to disturbance by Eurasian otter (Lutra lutra). Fish Physiology and Biochemistry, 2008, 34(3): 223-234.
[55] Steiner U K, Van Buskirk J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE, 2009, 4(7): e6160.
[56] Thaker M, Lima S L, Hews D K. Alternative antipredator tactics in tree lizard morphs: hormonal and behavioural responses to a predator encounter. Animal Behaviour, 2009, 77(2): 395-401. |