[1] 谢国祥, 郭宝福, 赵士权, 王艳莉, 陈辉. 南京市市售蔬菜硝酸盐含量及居民暴露量评估. 现代预防医学, 2013, 40(7): 1236-1238.
Xiu G Q, Guo F B, Zhao S Q, Wang Y L, Chen H. The nitrate contents in commercial vegetables and assessment of nitrate exposure in Nanjing residents. Modern Preventive Medicine, 2013, 40(7): 1236-1238. (in Chinese)
[2] 郭开秀, 姚春霞, 陈亦, 杨业凤, 陆利民. 上海市秋季蔬菜硝酸盐含量及风险摄入评估. 环境科学, 2011, 32(4): 1177-1181.
Guo K X, Yao C X, Chen Y, Yang Y F, Lu L M. Nitrate contents in autumn vegetables and assessment of nitrate intake in Shanghai. Environmental Science, 2011, 32(4): 1177-1181. (in Chinese)
[3] Koprivova A, Suter M, Opden C R, Brunold C, Kopriva S. Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiology, 2000, 122: 737-746.
[4] Mario G, John A R. Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 2014, 118: 45-61.
[5] Hoefgen R, Nikiforova V. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-de?ciency stress. Plant Physiology, 2008, 132: 190-198.
[6] Carfagna S, Vona V, Di Martino V, Esposito S, Rigano C. Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environmental and Experimental Botany, 2011, 71: 18-24.
[7] Donna M K, Joshua N, Nancy L E, Timothy J T, David E G. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Bioresource Technology, 2013, 130: 125-135.
[8] Hesse H, Nikiforova V, Gakiere B, Hoefge R. Molecular analysis and control of cysteine biosynthesis, integration of nitrogen and sulphur metabolism. Journal of Experimental Botany, 2004, 55: 1283-1292.
[9] Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber A P M, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K. Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sul?te reductase- like enzyme. Plant Cell Physiology, 2010, 51(5): 707-717.
[10] Aleksandra K, Peter B, Elisabeth E S, Freek S P, Stanislav K, Malcolm J H, Luit J D K. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. Journal of Plant Physiology, 2009, 166: 168-179.
[11] Zhang Q, Bok-Rye L, Sang-Hyun P, Rashed Z, Jean-Christophe A, Alain O, Tae-Hwan K. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus. Plant Physiology and Biochemistry, 2015, 87: 1-8.
[12] Muhammad S, Mei H T, Elisabeth E S, Aleksandra K, Freek S, Posthumus, Jan H V, Saroj P, Henk S, Malcolm J H, Luit J D K. Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. Journal of Plant Physiology, 2010, 167: 438-446.
[13] Abdallaha M, Etienne P, Ourry A, Meuriot F. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Science, 2011, 180: 511-520.
[14] Anne H, Mikiko K, Richard H, Wolfgang F, Hitoshi S, Cornelia H, Heinz R. Sulphur limitation and early sulphur de?ciency responses in poplar: signi?cance of gene expression, metabolites, and plant hormones. Journal of Experimental Botany, 2012, 63(5): 1873-1893.
[15] 李晓峰, 王俊玲, 李林妍, 谢鑫, 高志奎. 硫磺与水杨酸配施对韭菜硝酸盐累积及氮代谢的影响. 植物营养与肥料学报, 2013, 19(5): 1264 -1271.
Li X F, Wang J L, Li L Y, Xie X, Gao Z K. Effects of sulfur and salicylic acid on nitrate accumulation and nitrogen metabolism in leaves of Chinese chive. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1264-1271. (in Chinese)
[16] 孔灵君, 徐坤, 张永征, 何平. 硫对大葱生长及氮硫同化关键酶活性的影响. 园艺学报, 2013, 40(12): 2505-2512.
Kong L J, Xu K, Zhang Y Z, He P. Effects of sulfur on growth and key enzyme activities involved in nitrogen and sulfur assimilation in Chinese spring onion. Acta Horticulturae Sinica, 2013, 40(12): 2505-2512. (in Chinese)
[17] 霍捷, 王俊玲, 薛占军, 王梅, 高志奎. 亚硫酸氢钠对白菜叶片硝酸盐还原及光合能力的影响. 园艺学报, 2012, 39(4): 669-676.
Huo J, Wang J L, Xue Z J, Wang M, Gao Z K. Effects of sodium bisulfite on nitrate reduction and photosynthetic capacity in the leaves of non-heading Chinese cabbage. Acta Horticulturae Sinica, 2012, 39(4): 669-676. (in Chinese)
[18] 付雪清, 王俊玲, 高志奎. NaHSO3和Na2SO4配施对小白菜叶片硝酸盐含量及营养品质的影响. 河北农业大学学报, 2013, 36(6): 43-47.
Fu X Q, Wang J L, Gao Z K. Effects of NaHSO3 and Na2SO4 combination on the nitrate and nutritional quality non-heading Chinese cabbage. Journal of agricultural university of Hebei, 2013, 36(6): 43-47. (in Chinese)
[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000, 123-137.
Li H S. Theory and Technology of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000: 123-137. (in Chinese)
[20] Ren J, Chen Z W, Duan W K, Song X M, Zhou J, Liu T K, Wang J J, Hou X L, Li Y. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiology and Biochemistry, 2013, 73: 229-236.
[21] Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 2011, 62: 157-184.
[22] Dubousset L, Abdallah M, Desfeux A S, Etienne P, Meuriot F, Hawkesford M J, Gombert J, Segura R, Bataille M P, Reze S, Bonnefoy J, Ameline1 A F, Ourry A, Dily F L, Avice J C. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. Journal of Experimental Botany, 2009, 60(11): 3239-3253.
[23] Ruslan Y, Sarah G M, Colette M, Tamara G, Henning F, Sean D, Anna K, Ulf-Ingo F Stanislav K. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. The Plant Journal, 2010, 62: 1-11.
[24] Riemenschneider A, Nikiforova V, Hoefgen R, De K, Kok L J D, Papenbrock J. Impact of elevated H2S onmetabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiology and Biochemistry, 2005, 43: 473-483.
[25] Davidian J C, Kopriva S. Regulation of sulfate uptake and assimilation—the same or not the same? Molecular Plant, 2010, 3(2): 314-325.
[26] Giordano M, Norici A, Hell R. Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytologist, 2005, 166(2): 371-382.
[27] Abdallah M, Dubousset L, Meuriot F, Etienne P, Avice J C, Ourry A. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.. Journal of Experimental Botany, 2010, 61(10): 2635-2646.
[28] Zhang B, Pasini R, Hanbin D, Naveen J, Zhao Y H, Thoma, Zheng Z. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. The Plant Journal, 2014, 77: 185-197.
[29] Simona C, Vincenza V, Vittoria D M, Sergio E, Carmelo R. Nitrogen assimilation and cysteine biosynthesis in barley: Evidence for root sulphur assimilation upon recovery from N deprivation. Environmental and Experimental Botany, 2011, 71: 18-24.
[30] Lee B R, Muneer S, Kim K Y, Avice J C, Ourry A, Kim T H. S-deciency responsive accumulation of amino acids is mainly due to hydrolysis of the previously synthesized proteins not to de novo synthesis in Brassica napus. Physiologia Plantarum, 2013, 147: 369-380.
[31] Xu Y, Zhu X, Chen Y, Gong Y Q, Liu L. Expression pro?ling of genes involved in ascorbate biosynthesis and recycling during ?eshy root development in radish. Plant Physiology and Biochemistry, 2013, 70: 269-277.
[32] Prosser I M, Purves J V, Saker L R, Clarkson D T. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Journal of Experimental Botany, 2001, 52: 113-121.
[33] Nikiforova V J, Bielecka M, Gakiere B, Krueger S, Rinder J, Kempa S R, Morcuende R, Scheible W R, Hesse H, Hoefgen R. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 2006, 30: 173-183.
[34] Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251: 614-616.
[35] Suárez M F, Avila C, Gallardo F, Cantón F R, García- Gutiérrez A, Claros M G, Cánovas F M. Molecular and enzymatic analysis of ammonium assimilation in woody plants. Journal of Experimental Botany, 2002, 53: 891-904.
[36] Teixeira J, Fidalgo F. Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ- dependent manner. Plant Physiology and Biochemistry, 2009, 47: 807-813.
[37] Castro-Rodríguez V, García-Gutiérrez A, Canales J, Avila C, Kirby E G, Cánovas F M. The glutamine synthetase gene family in Populus. BMC Plant Biology, 2011, 11: 119-134.
[38] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 2009, 182: 608-620.
[39] Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Biology, 1996, 47: 569-593.
[40] Lu Y E, Luo F, Yang M, Li X H, Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sciences China Life Sciences, 2011, 54(7): 651-663.
[41] Lancien M, Martin M, Hsieh M H, Leustek T, Goodman H, Coruzzi G M. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. The Plant Journal, 2002, 29: 347-358.
[42] Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulphate accumulation and allocation in Arabidopsis thaliana. The Plant Journal, 2010, 62, 1046-1057. |