[1] Ben-Yehoshua S, Burg S P, Young R. Resistance of citrus fruit to mass transport of water vapor and other gases. Plant Physiology, 1985, 79(4): 1048-1053.
[2] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42(1): 51-80.
[3] Buschhaus C, Jetter R. Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces? Journal of Experimental Botany, 2011, 62(3): 841-853.
[4] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1-8.
[5] Yeats T H, Rose J K. The formation and function of plant cuticles. Plant physiology, 2013, 163(1): 5-20.
[6] Martin L B, Rose J K. There's more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany, 2014, 65(16): 4639-4651.
[7] Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 2008, 59: 683-707.
[8] Bernard A, Joubes J. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research, 2013, 52(1): 110-129.
[9] Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A. Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology, 2008, 147(2): 823-851.
[10] Peschel S, Franke R, Schreiber L, Knoche M. Composition of the cuticle of developing sweet cherry fruit. Phytochemistry, 2007, 68(7): 1017-1025.
[11] Belding R D, Sutton T B, Blankenship S M, Young E. Relationship between apple fruit epicuticular wax and growth of Peltaster fructicola and Leptodontidium elatius, two fungi that cause sooty blotch disease. Plant Disease, 2000, 84(7): 767-772.
[12] Yin Y, Bi Y, Chen S J, Li Y C, Wang Y, Ge Y H, Ding B, Li Y C, Zhang Z. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Sci Hortic- Amsterdam, 2011, 129(4): 577-582.
[13] Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme a synthase (LeCER6). Plant Physiology, 2007, 144(3): 1667-1679.
[14] Sala J M. Content, chemical composition and morphology of epicuticular wax of Fortune mandarin fruits in relation to peel pitting. Journal of the Science of Food and Agriculture, 2000, 80(13): 1887-1894.
[15] Liu D C, Zeng Q, Ji Q X, Liu C F, Liu S B, Liu Y. A comparison of the ultrastructure and composition of fruits' cuticular wax from the wild-type 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant. Plant Cell Reports, 2012, 31(12): 2239-2246.
[16] Wang J Q, Hao H H, Liu R S, Ma Q L, Xu J, Chen F, Cheng Y J, Deng X X. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and ‘Newhall’ navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chemistry, 2014, 153: 177-185.
[17] Nordby H E, McDonald R E. Friedelin, the major component of grapefruit epicuticular wax. Journal of Agricultural and Food Chemistry, 1994, 42(3): 708-713.
[18] 刘庆. ‘暗柳’甜橙红色突变体性状形成的分子机理研究[D]. 武汉: 华中农业大学, 2008.
Liu Q. Molecular mechanism for the altered traits of the red flesh bud sport of ‘Anliu’ sweet orange [D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[19] Fiebig A, Mayfield J A, Miley N L, Chau S, Fischer R L, Preuss D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. The Plant Cell, 2000, 12(10): 2001-2008.
[20] Chen X B, Goodwin S M, Boroff V L, Liu X L, Jenks M A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. The Plant Cell, 2003, 15(5): 1170-1185.
[21] Aarts M G, Keijzer C J, Stiekema W J, Pereira A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. The Plant Cell, 1995, 7(12): 2115-2127.
[22] Rowland O, Zheng H, Hepworth S R, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiology, 2006, 142(3): 866-877.
[23] Haslam T M, Manas-Fernandez A, Zhao L F, Kunst L. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology, 2012, 160(3): 1164-1174.
[24] Matas A J, Agusti J, Tadeo F R, Talon M, Rose J K. Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. Journal of Experimental Botany, 2010, 61(12): 3321-3330.
[25] Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4706-4711.
[26] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell, 2011, 23(3): 1138-1152.
[27] Hooker T S, Lam P, Zheng H, Kunst L. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. The Plant cell, 2007, 19(3): 904-913.
[28] Maffei M. Chemotaxonomic significance of leaf wax alkanes in the gramineae. Biochemical Systematics & Ecology, 1996, 24(1): 53-64.
[29] Li J, Huang J, Ge J, Huang X, Xie S. Chemotaxonomic significance of n-alkane distributions from leaf wax in genus of Sinojackia species (Styracaceae). Biochemical Systematics & Ecology, 2013, 49(2): 30-36. |