[1] Madhugiri N R, Jaya R S, Charles K, Neal S C. Advances in biotechnology and genomics of switchgrass. Biotechnology for Biofuels, 2013, 6(1): 77-92.
[2] Bouton J H. Molecular breeding of switchgrass for use as a biofuel crop. Current Opinion in Genetics & Development, 2007, 17(6): 553-558.
[3] McLaughlin S, Bouton J, Bransby D, Conger B, Ocumpaugh W, Parrish D, Wullschleger S. Developing switchgrass as a bioenergy crop. Perspectives on New Crops and New Uses, 1999, 282-299.
[4] Xu B, Huang L K, Shen Z X, Welbaum G E, Zhang X, Zhao B. Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Scientia Horticulturae, 2011, 129(4): 854-861.
[5] Burris J N, Mann D G J, Joyce B L, Stewart Jr C N. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicumvirgatum L.). Bioenergy Research, 2009, 2 (4): 267-274.
[6] Li R Y, Qu R D. High throughput Agrobacterium-mediated switchgrass transformation. Biomass and Bioenergy, 2011, 35(3): 1046-1054.
[7] Song G Q, Aaron W, Hancock J F. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell, Tissue and Organ Culture, 2012, 108(3): 445-453.
[8] Zhang W J, Dewey R E, Boss W, Phillippy B Q, Qu R D. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology, 2013, 81(3): 273-286.
[9] Patel M, Dewey R E, Qu R D. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell, Tissue and Organ Culture, 2013, 114(1): 19-29.
[10] Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H Q, Lemaux P G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports, 2009, 28(3): 429-444.
[11] Schmidt M A, LaFayette P R, Artelt B A, Parrott W A. A comparison of strategies for transformation with multiple genes via microprojectile- mediated bombardment. In Vitro Cellular & Developmental Biology- Plant, 2008, 44(3): 162-168.
[12] Jefferson R A. Assaying chimeric genes in plants: The GUS gene fusion system.Plant Molecular Biology Reporter,1987, 5(4): 387-405.
[13] Ramamoorthy R, Kumar P P. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Plant Cell Reports, 2012, 31(10): 1923-1931.
[14] Xi Y J, Fu C X, Ge Y X, Nandakumar R, Hisano H, Bouton J, Wang Z Y. Agrobacterium-mediated transformation of switchgrass and inheritance of transgenes. Bioenergy Research, 2009, 2(4): 275-283.
[15] Rueb S, Leneman M, Schilperoort R A, Hensgens L A M. Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). Plant Cell, Tissue and Organ Culture, 1994, 36(2): 259-264.
[16] Wang H Z, Cheng J, Cheng Y P, Zhou X F. Study progress on tissue culture of maize mature embryo. Physics Procedia, 2012, 25: 2225-2227.
[17] Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164(2): 207-214.
[18] Welter M E, Clayton D S, Miller M A, Petolino J E. Morphotypes of friable embryogenic maize callus. Plant Cell Reports, 1995, 14(11): 725-729.
[19] Lu C, Vasil I K, Ozias-Akins P. Somatic embryogenesis in Zea mays L. Theoretical and Applied Genetics, 1982, 62(2): 109-112.
[20] Redway F A, Vasil V, Lu D, Vasil I K. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1990, 79(5): 609-617.
[21] Chen J T, Chang W C. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Science, 2000, 160(1): 87-93.
[22] 李映辉, 宋娜, 王瑜晖, 彭福祥, 周闪, 唐华山, 张晶, 董宏图, 吕延华, 梁荣奇, 解超杰, 孙其信. 小麦成熟胚培养方法的优化及其在小麦遗传转化中的应用. 麦类作物学报, 2013, 33(1): 6-12.
Li Y H, Song N, Wang Y H, Peng F X, Zhou S, Tang H S, Zhang J, Dong H T, Lü Y H, Liang R Q, Xie C J, Sun Q X. Optimization of the tissue culture method using wheat mature embryos and its application in wheat transformation. Journal of Triticeae Crops, 2013, 33(1): 6-12. (in Chinese)
[23] Özgen M, Türet M, Alt?nok S, Sancak C. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticumae stivum L.) genotypes. Plant Cell Reports, 1998, 18(3/4): 331-335.
[24] Cheng M, Fry J E, Pang S Z, Zhou H P, Hironaka C M, Duncan D R, Conner T W, Wan Y C. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 1997, 115(3): 971-980.
[25] Delporte F, Mostade O, Jacquemin J M. Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell, Tissue and Organ Culture, 2001, 67(1): 73-80.
[26] Jagga-Chugh S, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari S L. Optimization of factors influencing microprojectile bombardment- mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L) Gaertn. Plant Cell, Tissue and Organ Culture, 2012, 109(3): 401-410.
[27] 马永清, 郝智强, 熊韶峻, 刘吉利. 我国柳枝稷规模化种植现状与前景. 中国农业大学学报, 2012, 17(6): 133-137.
Ma Y Q, Hao Z Q, Xiong S J, Liu J L. Present status and future of switchgrass going to scale plantation in China. Journal of China Agriculture University, 2012, 17(6): 133-137. (in Chinese) |