? Preparation of dry flowable formulations of <em>Clonostachys rosea</em> by spray drying and application for <em>Sclerotinia sclerotiorum</em> control
Quick Search in JIA      Advanced Search  
    2018, Vol. 17 Issue (03): 613-620     DOI: 10.1016/S2095-3119(17)61811-2
Plant Protection Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Preparation of dry flowable formulations of Clonostachys rosea by spray drying and application for Sclerotinia sclerotiorum control
WU Hong-qu1, 2*, SUN Li-li1*, LIU Fang2, Wang Zhi-ying1, CAO Chuan-wang1 
1 College of Forestry, Northeast Forestry University, Harbin 150040, P.R.China
2 Hubei Biopesticide Engineering Research Centre, Wuhan 430064, P.R.China
 Download: PDF in ScienceDirect (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract A dry flowable formulation of Clonostachys rosea with fungicidal activity against Sclerotinia sclerotiorum was prepared by spray drying.  The formulation was optimized by a four-factor, three-level orthogonal experiment to screen inert ingredients and spray-drying conditions.  The optimal dry flowable formulation of C. rosea included 30% C. rosea (ratio of conidia powder and its fermentation broth is 1:3), 3% Morwet EFW, 4% k12, 10% Morwet D425, 9% sodium salt of polynaphthalene sulphonic acid (NNO), 5% croscarmellose sodium, 5% (NH4)2SO4, 0.5% carboxymethyl cellulose sodium (CMC-Na), 1% oxalic acid and palygorskite (carrier) up to 100%.  The formulation exhibited good physical characteristics, such as high dispersibility, viability and a long shelf life.  Plate antagonism tests and pot trials indicated that the dry flowable formulation was very effective against S. sclerotiorum, with control efficiency of up to 88.30%.  This dry flowable formulation of C. rosea is a new potential commercial fungicide for spray drying to control S. sclerotiorum.  
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsClonostachys rosea     dry flowable formulation     Sclerotinia sclerotiorum    spray drying     
Received: 2017-05-25; Published: 2017-10-13

This work was supported by grants from the Fundamental Research Funds for the Central Universities, China (2572016DA02), the National Natural Science Foundation of China (31570642) and the Science and Technology Innovation and Entrepreneurship Projects of Returned Overseas Personnel in Jilin Province, China (2013-36).

Corresponding Authors: Correspondence WANG Zhi-ying, Tel: +86-451-82191512, E-mail: zhiyingwangnefu @aliyun.com; CAO Chuan-wang, Tel: +86-451-82191822, E-mail: chuanwangcao@nefu.edu.cn   
About author: WU Hong-qu, E-mail: 139711877@qq.com; * These authors contributed equally to this study.
Cite this article:   
WU Hong-qu, SUN Li-li, LIU Fang, Wang Zhi-ying, CAO Chuan-wang. Preparation of dry flowable formulations of Clonostachys rosea by spray drying and application for Sclerotinia sclerotiorum control[J]. Journal of Integrative Agriculture, 2018, 17(03): 613-620.
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(17)61811-2      or     http://www.chinaagrisci.com/Jwk_zgnykxen/EN/Y2018/V17/I03/613
[1] Baloyi M A, Laing M D, Yobo K S. 2012. Use of mixed cultures of biocontrol agents to control sheep nematodes. Veterinary Parasitology, 184, 367-370.
[2] Bolton M D, Thomma B P H J, Nelson B D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1-16.
[3] Chatterton S, Punja Z K. 2009. Chitinaseand β-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian Journal of Microbiology, 55, 356-367.
[4] Doherty K E, Naugle D E, Copeland H, Pocewicz A, Kiesecker J. 2011. Energy development and conservation tradeoffs: Systematic planning for sage-grouse in their eastern range. Studies in Avian Biology, 38, 505-516.
[5] Dong J Y, Zhao Z X, Cai L, Liu S Q, Zhang H R, Duan M, Zhang K Q. 2004. Nematicidal effect of freshwater fungal cultures against the pine-wood nematode Bursaphelenchus xylophilus. Fungal Diversity, 15, 125-135.
[6] Druzhinina I S, Seidl-Seiboth V, Herrera-Estrella A, Horwitz B A, Kenerley C M, Monte E, Mukherjee P K, Zeilinger S, Grigoriev I V, Kubicek C P. 2011. Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 97, 749-759.
[7] Grau C R, Hartman G L. 1999. Sclerotinia stem rot. In: Hartaman G L, Sinclair J B, Rupe J C, eds., Compendium of Soybean Diseases. 4th ed. APS Press, St. Paul. MN. pp. 46-48.
[8] Guijarro B, Larena I, Melgarejo P, De Cal A. 2006. Effect of drying on conidial viability of Penicillium frequentans, a biological control agent against peach brown rot disease caused by Monilinia spp. Biocontrol Science and Technology, 16, 257-269.
[9] Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17-25.
[10] Horaczek A, Viernstein H. 2004. Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of Beauveria brongniartii and Metarhizium anisopliae. Biological Control, 31, 65-71.
[11] Huang H C. 1978. Gliocladium catenulatum: Hyperparasite of Sclerotinia sclerotiorum and Fusarium species. American Journal of Botany, 56, 2243-2246.
[12] Jensen B, Knudsen I M B, Jensen D F. 2002. Survival of conidia of Clonostachys rosea on stored barleyseedsand their biocontrol efficacy against seed-borne Bipolaris sorokiniana. Biocontrol Science and Technology, 12, 427-441.
[13] Jensen B, Knudsen I M B, Madsen M, Jensen D F. 2004. Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Biological Control, 94, 551-560.
[14] Jensen D F, Knudsen I M B, Lübeck M, Mamarabadi M, Hockenhull J, Jensen B. 2007. Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain ‘IK726’. Australasian Plant Pathology, 36, 95-101.
[15] Kapongo J P, Shipp L, Kevan P, Sutton J C. 2008. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, 46, 508-514.
[16] Keinath A P, Fravel D R,Papavizas G C. 1991. Potential ofGliocladium roseumfor biocontrol ofVerticillium dahliae. Phytopathology, 81, 644-648.
[17] Knudsen I M B, Hockenhull J, Jensen D F. 1995. Biocontrol of seedling diseases of barley and wheat caused byFusarium culmorumand Bipolaris sorokiniana: Effects of selected fungal antagonists on growth and yield components. European Journal of Plant Pathology, 44, 467-477.
[18] Krauss U, Ten Hoopen M, Rees A R, Stirrup T, Argyle T, George A, Arroyo C, Corrales E, Casanoves F. 2013. Mycoparasitism byClonostachysbyssicolaand Clonostachys roseaonTrichodermaspp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 67, 317-327.
[19] Larena I, De Cal A, Linan M, Melgarejo P. 2003. Drying of Epicoccum nigrum conidia for obtaining a shelfstable biological product against brown rot disease. Journal of Applied Microbiology, 94, 508-514.
[20] Lorito M, Woo S L, Harman G E, Monte E. 2010. Translational research on Trichoderma: From ‘omics to the field. Annual Review of Phytopathology, 48, 395-417.
[21] Ma G Z, Wu X R, Yang W L, Lu G Z. 2004. Inbition of zymotic liquid from different isolates of Gliocladium spp. to three pathogenic fungi. Journal of Huazhong Agricultural University, 23, 96-99. (in Chinese)
[22] Ma X, Wang X B, Cheng J, Nie X, Yu X X, Zhao Y T, Wang W. 2015. Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biological Control, 90, 34-41.
[23] McQuilken M P, Gemmell J, Lahdenpera M L. 2001. Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149, 171-178.
[24] Meng X K, Yu J J, Yu M N, Yin X L, Liu Y F. 2015. Dry flowable formulations of antagonistic Bacillus subtilis strain T429 by spray drying to control rice blast disease. Biological Control, 85, 46-51.
[25] Mukherjee P K, Horwitz B A, Herrera-Estrella A, Schmoll M, Kenerley C M. 2013. Trichoderma research in the genome era. Annual Review of Phytopathology, 51, 105-129.
[26] Mukherjee P K, Horwitz B A, Kenerley C M. 2012. Secondary metabolism in Trichoderma - A genomic perspective. Microbiology, 158, 35-45.
[27] Munoz-Celaya A L, Ortiz-Garcia M, Vernon-Carter E J, Jauregui-Rincon J, Galindo E, Serrano-Carreon L. 2012. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydrate Polymers, 88, 1141-1148.
[28] Purdy L H. 1979. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69, 875-880.
[29] Rajam R, Anandharamakrishnan C. 2015. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology, 60, 773-780.
[30] Rodríguez M A, Cabrera G, Gozzo F C, Eberlin M N, Godeas A. 2011. Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: Mechanisms involved and potential as a biocontrol agent. Journal of Applied Microbiology, 110, 1177-1186.
[31] Shao L, Wu H Q, Li J, Wang D, Cao C W, Wang Z Y, Sun L L. 2014. Preparation of the wettable powder formulation of 10% Clonostachys rosea. Journal of Anhui Agricultural Science, 42, 1353-1355. (in Chinese)
[32] Sutton J C, Li D W, Peng G, Hai Y, Zhang P G, Valdebenito-Sanhueza R M. 1997. Gliocladium roseum a versatile adversary of Botrytis cinerea in crops. Plant Disease, 81, 316-328.
[33] Vargas Gil S, Pastor G S, March G J. 2009. Quantitative isolation of biocontrol agents Trichoderma spp. Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research, 164, 196-205.
[34] Walters R H, Bhatnagar B, Tchessalov S, Izutsu K, Tsumoto K, Ohtake S. 2014. Next generation drying technologies for pharmaceutical applications. Journal of Pharmaceutical Sciences, 103, 2673-2695.
[35] Wang A X, Zhang L L, Wang X, Qu W, Kang L G, Chen X L. 2015. Study on growth-promoting effects and application patterns of Clonostachys rosea in tomato. Journal of Northeast Agricultural University, 46, 37-44. (in Chinese)
[36] Wang C L, Zhang J H, Guo S X, Yang J S, Xiao P G. 2001. The study on the chemical constttutes from Gliocladium roseum. Acta Microbiologica Sinica, 28, 24-27. (in Chinese)
[37] Weitz H J, Ballard A L, Campbell C D, Killham K. 2001. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiology Letters, 202, 165-170.
[38] Yu H, Sutton J C. 1997. Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseumto raspberry flowers to control Botrytis cinerea. Biological Control, 10, 113-122.
[39] Zhou X Y, Dong J P, Gao J B, Yu Z N. 2008. Activity-loss characteristics of spores of Bacillus thuringiensis during spray drying. Food and Bioproducts Processing, 86, 37-42
No Similar of article
Copyright © 2015 ChinaAgriSci.com, All Rights Reserved
Chinese Academy of Agricultural Sciences (CAAS) No. 12 South Street, Zhongguancun, Beijing 100081, P. R. China
http://www.ChinaAgriSci.com   JIA E-mail: jia_journal@caas.cn