? First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on <em>Bemisia tabaci</em> MED in China
Quick Search in JIA      Advanced Search  
    2018, Vol. 17 Issue (01): 158-163     DOI: 10.1016/S2095-3119(16)61613-1
Plant Protection Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China
WANG Ran1*, WANG Jin-da2*, CHE Wu-nan3, LUO Chen1   
1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China
2 National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, P.R.China
 Download: PDF in ScienceDirect (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The Bemisia tabaci (Gennadius) cryptic species complex comprises important insect pests that cause devastating damage to agricultural crops worldwide.  In China, the B. tabaci Mediterranean (MED) (or biotype Q) species is threatening agricultural production all over the country as resistance to commonly used insecticides has increased.  This situation highlights the need for alternative pest control measures.  Cyantraniliprole, a novel anthranilic diamide insecticide, has been widely employed to control Hemipteran pests.  To monitor the levels of resistance to cyantraniliprole in B. tabaci field populations in China, bioassays were conducted for 18 field samples from nine provinces over two years.  Compared with median lethal concentration (LC50) for the MED susceptible strain, all field samples had significantly higher resistance to cyantraniliprole.  Furthermore, resistance factors (RFs) increased significantly in samples from Shanxi (from 5.62 in 2015 to 25.81 in 2016), Hunan (3.30 in 2015 to 20.97 in 2016) and Hubei (from 9.81 in 2015 to 23.91 in 2016) provinces.  This study indicates a considerable decrease in the efficacy of cyantraniliprole against B. tabaci and establishes a baseline of susceptibility that could serve as a reference for future monitoring and management of B. tabaci resistance to cyantraniliprole.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsBemisia tabaci     cyantraniliprole     anthranilic diamides     baseline susceptibility     resistance development     
Received: 2017-02-13; Published: 2017-03-17

This work was supported by the National Natural Science Foundation of China (31601635), the Beijing Natural Science Foundation, China (6174038), and the earmarked fund for Beijing Innovation Consortium of Agriculture Research System, China (BAIC07-2017).

Corresponding Authors: Correspondence LUO Chen, Tel: +86-10-51503338, E-mail: luochen1010@126.com    
About author: WANG Ran, Tel:+86-10-51503338, E-mail:rwang1105@126.com
Cite this article:   
WANG Ran, WANG Jin-da, CHE Wu-nan, LUO Chen. First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China[J]. Journal of Integrative Agriculture, 2018, 17(01): 158-163.
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(16)61613-1      or     http://www.chinaagrisci.com/Jwk_zgnykxen/EN/Y2018/V17/I01/158
[1] Ahmad M, Arif M I, Naveed M. 2010. Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. Journal of Pest Science, 83, 409-420.
[2] Andrione M, Vallortigara G, Antolini R, Haase A. 2016. Neonicotinoid-induced impairment of odour coding in the honeybee. Scientific Reports, 6, 38110.
[3] De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19.
[4] Barwary Z, Gorzlancyk A, Hu X P. 2015. Effects of concentration, distance, and application methods of Altriset (Chlorantraniliprole) on eastern subterranean termite (Isoptera: Rhinotermitidae). Insect Science, 22, 451-460.
[5] Basit M, Saleem M A, Saeed S, Sayyed A H. 2012. Cross resistance, genetic analysis and stability of resistance to buprofezin in cotton whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Crop Protection, 40, 16-21.
[6] Bass C, Denholm I, Williamson M S, Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121, 78-87.
[7] Bielza P, Guillén J. 2015. Cyantraniliprole: a valuable tool for Frankliniella occidentalis (Pergande) management. Pest Management Science, 71, 1068-1074.
[8] Bird L J. 2016. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to cyantraniliprole determined from topical and ingestion bioassays. Journal of Economic Entomology, 109, 1350-1356.
[9] Chu D, Zhang Y J, Brown J K, Cong B, Xu B Y, Wu Q J, Zhu G R. 2006. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist, 89, 168-174.
[10] Cook N, Green J, Shuker D M, Whitehorn P R. 2016. Exposure to the neonicotinoid imidacloprid disrupts sex allocation cue use during superparasitism in the parasitoid wasp Nasonia vitripennis. Ecological Entomology, 41, 693-697.
[11] David D, George I A, Peter J V. 2007. Toxicology of the newer neonicotinoid insecticides: Imidacloprid poisoning in a human. Clinical Toxicology, 45, 485-486.
[12] Grávalos C, Fernández E, Belando A, Moreno I, Ros C, Bielza P. 2015. Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Management Science, 71, 1030-1036.
[13] Hogenhout S A, Ammar E D, Whitfield A E, Redinbaugh M G. 2008. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359.
[14] Horowitz A R, Ishaaya I. 2014. Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Management Science, 70, 1568-1572.
[15] Horowitz A R, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216-225.
[16] Jacobson A L, Kennedy G G. 2011. The effect of three rates of cyantraniliprole on the transmission of tomato spotted wilt virus by Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) to Capsicum annuum. Crop Protection, 30, 512-515.
[17] Jutsum A R, Heaney S P, Perrin B M, Wege P J. 1998. Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pesticide Science, 54, 435-446. 3.0.CO;2-K target="_blank">
[18] Kodandaram M H, Rai A B, Sireesha K, Halder J. 2015. Efficacy of cyantraniliprole a new anthranilic diamide insecticide against Leucinodes orbonalis (Lepidoptera: Crambidae) of brinjal. Journal of Environmental Biology, 36, 1415-1420.
[19] Lahm G P, Stevenson T M, Selby T P, Freudenberger J H, Cordova D, Flexner L, Bellin C A, Dubas C M, Smith B K, Hughes K A, Hollingshaus J G, Clark C E, Benner E A. 2007. Rynaxypyr: A new insecticidal anthanilic diamide that actsas a potent and selective ryanodine receptor activator. Bioorganic & Medicinal Chemistry Letters, 17, 6274-6279.
[20] Lanka S K, Blouin D C, Stout M J. 2015. Integrating flood depth and plant resistance with chlorantraniliprole seed treatments for management of rice water weevil, Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). Insect Science, 22, 679-687.
[21] LeOra Software. 2002. Polo Plus, A User’s Guide to Probit or Logit Analysis. LeOra Software, Berkeley, CA.
[22] Li X C, Degain B A, Harpold V S, Marçon P G, Nichols R L, Fournier A J, Naranjo S E, Palumbo J C, Ellsworth P C. 2012. Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Management Science, 68, 83-91.
[23] Luo C, Yao Y, Wang R J, Yan F M, Hu D X, Zhang Z L. 2002. The use of mitochondrial cytochrome oxidase mt COI gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomologica Sinica, 45, 759-763. (in Chinese)
[24] Pan H P, Chu D, Ge D Q, Wang S L, Wu Q J, Xie W, Jiao X G, Liu B M, Yang X, Yang N N, Su Q, Xu B Y, Zhang Y J. 2011. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. Journal of Economic Entomology, 104, 978-985.
[25] Pan H P, Chu D, Yan W Q, Su Q, Liu B M, Wang S L, Wu Q J, Xie W, Jiao X G, Li R M, Yang N N, Yang X, Xu B Y, Brown J K, Zhou X G, Zhang Y J. 2012. Rapid spread of Tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLOS ONE, 7, e34817.
[26] Pan H P, Preisser E L, Chu D, Wang S L, Wu Q J, Zhou X G, Zhang Y J. 2015. Insecticides promote viral outbreaks in China by altering herbivore competition. Ecological Applications, 25, 1585-1595.
[27] Peck D C, Olmstead D, Morales A. 2008. Application timing and efficacy of alternatives for the insecticidal control of Tipula paludosa Meigen (Diptera: Tipulidae), a new invasive pest of turf in the northeastern United States. Pest Management Science, 64, 989-1000.
[28] Rattan R S, Purohit H, Patel C, Suvagia P, Singh V, Portillo H, Annan I B, Alvarez J M. 2015. Effect of cyantraniliprole on feeding cessation of Q biotype Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Advances in Entomology, 3, 56-64.
[29] Robertson J L, Preisler H K. 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton, FL, USA.
[30] Sang S, Shu B S, Yi X, Liu J, Hu M Y, Zhong G H. 2016. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Management Science, 72, 922-928.
[31] Sattelle D B, Cordova D, Cheek T R. 2008. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience, 8, 107-119.
[32] Wakil W, Ghazanfar M U, Riasat T, Qayyum M A, Ahmed S, Yasin M. 2013. Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations. Phytoparasitica, 41, 221-234.
[33] Wang H L, Yang J, Boykin L M, Zhao Q Y, Wang Y J, Liu S S, Wang X W. 2014. Developing conversed microsatellite markers and their implications in evolutionary analysis of the Bemisia tabaci complex. Scientific Reports, 4, 6351.
[34] Wang R, Zhang W, Che W N, Qu C, Li F Q, Desneux N, Luo C. 2017. Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Crop Protection, 91, 108-113.
[35] Wang Z Y, Yan H F, Yang Y H, Wu Y D. 2010. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 66, 1360-1366.
[36] Zhang R M, He S Y, Chen J H. 2014. Monitoring of Bactrocera dorsalis (Diptera: Tephritidae) resistance to cyantraniliprole in the south of China. Journal of Economic Entomology, 107, 1233-1238.
[37] Zhang R M, Jang E B, He S Y, Chen J H. 2015. Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pest Management Science, 71, 250-256.
[38] Zheng H X, Xie W, Wang S L, Wu Q J, Zhou X M, Zhang Y J. 2017. Dynamic monitoring (B versus Q) and further resistance status of Q type Bemisia tabaci in China. Crop Protection, 94, 115-121.
No Similar of article
Copyright © 2015 ChinaAgriSci.com, All Rights Reserved
Chinese Academy of Agricultural Sciences (CAAS) No. 12 South Street, Zhongguancun, Beijing 100081, P. R. China
http://www.ChinaAgriSci.com   JIA E-mail: jia_journal@caas.cn