农业生态环境-土壤微科学Agro-ecosystem & Environment—Soil Science
Soil salinization is a critical environmental issue restricting agricultural production. Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress. However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive. Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer. Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively. The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth. Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile. Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield. Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period. The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system
Straw return is a promising strategy for managing soil organic carbon (SOC) and improving yield stability. However, the optimal straw return strategy for sustainable crop production in the wheat (Triticum aestivum L.)–cotton (Gossypium hirsutum L.) cropping system remains uncertain. The objective of this study was to quantify the long-term (10 years) impact of carbon (C) input on SOC sequestration, soil aggregation and crop yields in a wheat–cotton cropping system in the Yangtze River Valley, China. Five treatments were arranged with a single-factor randomized design as follows: no straw return (Control), return of wheat straw only (Wt), return of cotton straw only (Ct), return of 50% wheat and 50% cotton straw (Wh-Ch) and return of 100% wheat and 100% cotton straw (Wt-Ct). In comparison to the Control, the SOC content increased by 8.4 to 20.2% under straw return. A significant linear positive correlation between SOC sequestration and C input (1.42–7.19 Mg ha−1 yr−1) (P<0.05) was detected. The percentages of aggregates of sizes >2 and 1–2 mm at the 0–20 cm soil depth were also significantly elevated under straw return, with the greatest increase of the aggregate stability in the Wt-Ct treatment (28.1%). The average wheat yields increased by 12.4–36.0% and cotton yields increased by 29.4–73.7%, and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton. The average sustainable yield index (SYI) reached a maximum value of 0.69 when the C input was 7.08 Mg ha−1 yr−1, which was close to the maximum value (SYI of 0.69, C input of 7.19 Mg ha−1 yr–1) in the Wt-Ct treatment. Overall, the return of both wheat and cotton straw was the best strategy for improving SOC sequestration, soil aggregation, yields and their sustainability in the wheat–cotton rotation system.
Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops. However, there is currently no clarity on the responses of soil organic carbon (SOC), total nitrogen (TN), and available nutrients to tillage practices within the growing season. This study evaluated the effects of three tillage practices (NT, no tillage; SS, subsoil tillage; DT, deep tillage) over five years on soil physicochemical properties. Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions. The results indicated that SS and DT improved grain yield, straw biomass and straw carbon return of wheat compared with NT. In contrast to DT and NT, SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate (SOCSR) and soil nitrogen sequestration rate (TNSR) in the 0–40 cm layer. Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions, while TN was positively associated with soluble organic nitrogen (SON). Compared with DT, the NT and SS treatments improved soil available nutrients in the 0–20 cm layer. These findings suggest that SS is an excellent practice for increasing soil carbon, nitrogen and nutrient availability in dryland wheat fields in North China.
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes, as well as the formation mechanism of aggregates in reclaimed soil, to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province, China. In this study, soil samples of 0–20 cm depth were collected from four fertilization treatments of a long-term experiment started in 2008: no fertilizer (CK), inorganic fertilizer (NPK), chicken manure compost (M), and 50% inorganic fertilizer plus 50% chicken manure compost (MNPK). The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed. The results showed that the formation of >2 mm aggregates, the aggregate mean weight diameter (MWD), and the proportion of >0.25 mm water-stable aggregates (WR0.25) increased significantly after 6 and 11 years of reclamation. The concentration of organic cementing agents tended to increase with reclamation time, whereas free iron oxide (Fed) and free aluminium oxide (Ald) concentrations initially increased but then decreased. In general, the MNPK treatment significantly increased the concentrations of organic cementing agents and CaCO3, and CaCO3 increased by 60.4% at 11 years after reclamation. Additionally, CaCO3 had the greatest effect on the stability of aggregates, promoting the formation of >0.25 mm aggregates and accounting for 54.4% of the variance in the proportion and stability of the aggregates. It was concluded that long-term reclamation is beneficial for improving soil structure. The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO3.
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion. However, the effects of straw mulching on dissolved organic matter (DOM) runoff loss from black soil are not well studied. How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear. Here, a straw mulching treatment was compared to a no mulching treatment (as a control) on sloping farmland with black soil erosion in Northeast China. We divided the soil into large macroaggregates (>2 mm), small macroaggregates (0.25–2 mm), and microaggregates (<0.25 mm). After five rain events, the effects of straw mulching on the concentration (characterized by dissolved organic carbon (DOC)) and composition (analyzed by fluorescence spectroscopy) of runoff and soil aggregate DOM were studied. The results showed that straw mulching reduced the runoff amount by 54.7%. Therefore, although straw mulching increased the average DOC concentration in runoff, it reduced the total runoff DOM loss by 48.3%. The composition of runoff DOM is similar to that of soil, as both contain humic-like acid and protein-like components. With straw mulching treatment, the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events. Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics. A variation partitioning analysis (VPA) indicated that the DOM concentration and composition of microaggregates explained 68.2% of the change in runoff DOM from no mulching plots, while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%. Taken together, our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates, thus effecting DOM compositions in soil and reducing the DOM loss in runoff. These results provide a theoretical basis for reducing carbon loss in sloping farmland.