Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.
WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei
2023, 22 (7): 2000-2014.   DOI: 10.1016/j.jia.2022.10.007
Abstract291)      PDF in ScienceDirect      
Plant architecture and leaf color are important factors influencing cotton fiber yield. In this study, based on genetic analysis, stem paraffin sectioning, and phytohormone treatments, we showed that the dwarf-red (DR) cotton mutant is a gibberellin-sensitive mutant caused by a mutation in a single dominant locus, designated GhDR. Using bulked segregant analysis (BSA) and genotyping by target sequencing (GBTS) approaches, we located the causative mutation to a ~197-kb genetic interval on chromosome A09 containing 25 annotated genes. Based on gene annotation and expression changes between the mutant and normal plants, GH_A09G2280 was considered to be the best candidate gene responsible for the dwarf and red mutant phenotypes. A 2-nucleotide deletion was found in the coding region of GhDR/GH_A09G2280 in the DR mutant, which caused a frameshift and truncation of GhDR. GhDR is a homolog of Arabidopsis AtBBX24, and encodes a B-box zinc finger protein. The frameshift deletion eliminated the C-terminal nuclear localization domain and the VP domain of GhDR, and altered its subcellular localization. A comparative transcriptome analysis demonstrated downregulation of the key genes involved in gibberellin biosynthesis and the signaling transduction network, as well as upregulation of the genes related to gibberellin degradation and the anthocyanin biosynthetic pathway in the DR mutant. The results of this study revealed the potential molecular basis by which plant architecture and anthocyanin accumulation are regulated in cotton.  

Reference | Related Articles | Metrics
Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22
LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong
2023, 22 (7): 1985-1999.   DOI: 10.1016/j.jia.2022.12.002
Abstract301)      PDF in ScienceDirect      
The identification of stable quantitative trait locus (QTL) for yield-related traits and tightly linked molecular markers is important for improving wheat grain yield. In the present study, six yield-related traits in a recombinant inbred line (RIL) population derived from the Zhongmai 578/Jimai 22 cross were phenotyped in five environments. The parents and 262 RILs were genotyped using the wheat 50K single nucleotide polymorphism (SNP) array. A high-density genetic map was constructed with 1 501 non-redundant bin markers, spanning 2 384.95 cM. Fifty-three QTLs for six yield-related traits were mapped on chromosomes 1D (2), 2A (9), 2B (6), 2D, 3A (2), 3B (2), 4A (5), 4D, 5B (8), 5D (2), 7A (7), 7B (3) and 7D (5), which explained 2.7–25.5% of the phenotypic variances. Among the 53 QTLs, 23 were detected in at least three environments, including seven for thousand-kernel weight (TKW), four for kernel length (KL), four for kernel width (KW), three for average grain filling rate (GFR), one for kernel number per spike (KNS) and four for plant height (PH). The stable QTLs QKl.caas-2A.1, QKl.caas-7D, QKw.caas-7D, QGfr.caas-2B.1, QGfr.caas-4A, QGfr.caas-7A and QPh. caas-2A.1 are likely to be new loci. Six QTL-rich regions on 2A, 2B, 4A, 5B, 7A and 7D, showed pleiotropic effects on various yield traits. TaSus2-2B and WAPO-A1 are potential candidate genes for the pleiotropic regions on 2B and 7A, respectively. The pleiotropic QTL on 7D for TKW, KL, KW and PH was verified in a natural population. The results of this study enrich our knowledge of the genetic basis underlying yield-related traits and provide molecular markers for high-yield wheat breeding.
Reference | Related Articles | Metrics
Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China
SHAN Nan, WANG Pu-tao, ZHU Qiang-long, SUN Jing-yu, ZHANG Hong-yu, LIU Xing-yue, CAO Tian-xu, CHEN Xin, HUANG Ying-jin, ZHOU Qing-hong
2020, 19 (11): 2839-2848.   DOI: 10.1016/S2095-3119(20)63270-1
Abstract179)      PDF in ScienceDirect      
China is an important domestication center of yams, and two main yam species of Dioscorea opposita and D. alata are commonly cultivated in China.  However, the differences of nutritional and medicinal characteristics between the two species and their subgroups remain unclear, which would greatly affect the resource conservation and commercial utilization of yams.  In this study, typical yam resources including the species of D. opposita (wild and cultivated Ruichang yam from southern China, and Tiegun yam from northern China) and two landraces of D. alata (Longyan yam and Anyuan yam from southern China) were selected as materials.  Nutritional traits and medicinal characteristics were determined and analyzed respectively.  The results showed that there was no significant differences in the content of most nutrients between D. opposita and D. alata, but most cultivated Ruichang yam of D. opposita showed higher levels of starch, soluble sugar, sucrose, and ascorbate in tuber than that in yam from D. alata.  Moreover, an UPLC-MS method was developed for identification and determination of medicinal characteristics in the two species.  The results showed that allantoin can be detected in all selected samples.  Cultivated Ruichang yam of D. opposita possessed the highest allantoin content among the tested materials, and was significantly different with that in Tiegun yam and D. alata. Dioscin was not detected in D. alata. Overall, there was little difference in nutritional composition between D. opposita and D. alata, but the medicinal quality of D. opposita was better than that of D. alata.  Due to the outstanding comprehensive quality, the local variety of cultivated Ruichang yam can be further developed and utilized.
Reference | Related Articles | Metrics
Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies
ZHU Qian, KONG Ling-jian, SHAN Yu-zi, YAO Xing-dong, ZHANG Hui-jun, XIE Fu-ti, AO Xue
2019, 18 (10): 2242-2254.   DOI: 10.1016/S2095-3119(19)62563-3
Abstract142)      PDF in ScienceDirect      
This study was conducted with two soybean cultivars, Liaodou 13 (L13, phosphorus (P)-efficient) and Tiefeng 3 (T3, P-inefficient), to investigate the effects of biochar on soybean yield and photosynthetic physiological parameters, at four biochar application rates (0, 1, 5, and 10%, w/w), and two fertilization treatments (0 and 150 kg ha–1).  Grain yield, plant biomass, P accumulation, leaf net photosynthetic rate (Pn), chlorophyll index (Chl), nitrogen balance index (NBI), sucrose phosphate synthase (SPS), and sucrose synthase (SS) activities, soluble sugar, sucrose and starch contents, and leaf area duration (LAD) were measured.  Biochar had positive effects on Pn, Chl, NBI, SPS, and SS activities, and leaf soluble sugar, sucrose, and starch contents of both genotypes, these effects increased with biochar application rate.  L13 benefited more efficiently from biochar than T3 did, as the grain yield of L13 significantly increased by 31.0 and 51.0%, at 5 and 10% biochar, respectively, while that of T3 increased by 40.4 at 10% biochar application rate, as compared with controls.  The combined application of biochar and fertilizer boosted the positive effects described, but no difference was found for grain yield in L13 among biochar application rates, while grain yield of T3 continually increased with biochar rate, among which, 1% biochar combined with 150 kg ha–1 fertilizer resulted in T3 yield increment of more than 23%, compared with the application of 150 kg ha–1 fertilizer alone.  Altogether, our results indicated that the application of biochar enhanced carbon assimilation in soybean, resulting in increased biomass accumulation and yield.  Differences in genotypic responses to biochar highlight the need to consider specific cultivars and biochar rate, when evaluating the potential responses of crops to biochar.
 
Reference | Related Articles | Metrics
Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain
HUANG Ping, ZHANG Jia-bao, XIN Xiu-li, ZHU An-ning, ZHANG Cong-zhi, MA Dong-hao, ZHU Qiang-gen, YANG Shan, WU Sheng-jun
2015, 14 (1): 148-157.   DOI: 10.1016/S2095-3119(14)60750-4
Abstract1789)      PDF in ScienceDirect      
Cropland productivity has been significantly impacted by soil acidification resulted from nitrogen (N) fertilization, especially as a result of excess ammoniacal N input. With decades’ intensive agricultural cultivation and heavy chemical N input in the Huang-Huai-Hai Plain, the impact extent of induced proton input on soil pH in the long term was not yet clear. In this study, acidification rates of different soil layers in the soil profile (0–120 cm) were calculated by pH buffer capacity (pHBC) and net input of protons due to chemical N incorporation. Topsoil (0–20 cm) pH changes of a long-term fertilization field (from 1989) were determined to validate the predicted values. The results showed that the acid and alkali buffer capacities varied significantly in the soil profile, averaged 692 and 39.8 mmolc kg–1 pH–1, respectively. A significant (P<0.05) correlation was found between pHBC and the content of calcium carbonate. Based on the commonly used application rate of urea (500 kg N ha–1 yr–1), the induced proton input in this region was predicted to be 16.1 kmol ha–1 yr–1, and nitrification and plant uptake of nitrate were the most important mechanisms for proton producing and consuming, respectively. The acidification rate of topsoil (0–20 cm) was estimated to be 0.01 unit pH yr–1 at the assumed N fertilization level. From 1989 to 2009, topsoil pH (0–20 cm) of the long-term fertilization field decreased from 8.65 to 8.50 for the PK (phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1; without N fertilization), and 8.30 for NPK (nitrogen, 300 kg N ha–1 yr–1; phosphorus, 150 kg P2O5 ha–1 yr–1; potassium, 300 kg K2O ha–1 yr–1), respectively. Therefore, the apparent soil acidification rate induced by N fertilization equaled to 0.01 unit pH yr–1, which can be a reference to the estimated result, considering the effect of atmospheric N deposition, crop biomass, field management and plant uptake of other nutrients and cations. As protons could be consumed by some field practices, such as stubble return and coupled water and nutrient management, soil pH would maintain relatively stable if proper management practices can be adopted in this region.
Reference | Related Articles | Metrics
Effect of Phosphorus Fertilization to P Uptake and Dry Matter Accumulation in Soybean with Different P Efficiencies
AO Xue, GUO Xiao-hong, ZHU Qian, ZHANG Hui-jun, WANG Hai-ying, MA Zhao-hui, HAN , Xiao-ri , ZHAO Ming-hui , XIE Fu-ti
2014, 13 (2): 326-334.   DOI: 10.1016/S2095-3119(13)60390-1
Abstract2376)      PDF in ScienceDirect      
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference of biomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
Reference | Related Articles | Metrics
Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean
AO Xue, ZHAO Ming-hui, ZHU Qian, LI Jie, ZHANG Hui-jun, WANG Hai-ying, YU Cui-mei, LI Chunhong, YAO Xing-dong, XIE Fu-ti , HAN Xiao-ri
2013, 12 (7): 1173-1182.   DOI: 10.1016/S2095-3119(13)60444-X
Abstract1486)      PDF in ScienceDirect      
Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.
Reference | Related Articles | Metrics