The study aimed to evaluate the application of silage fermentation in storing vine tea residue. Dynamic of fermentation-related product, chemical component and bacterial community of silage with or without Lactobacillus plantarum F1 inoculant were analyzed. The results showed that F1 treatment had a significant (P<0.05) impact on the lactic acid and ammoniacal nitrogen concentrations and pH value. Total phenols were well preserved in both treatments. After 30 days of ensiling, L. plantarum occupied the majority of Lactobacillus genus (more than 95%) in all silage samples. Spearman revealed a positive (P<0.01) correlation between lactic acid content and Lactobacillus. Overall, ensiling vine tea residue with L. plantarum can effectively preserve the nutritional attributes and total phenols, which offers a new insight into utilizing vine tea residue.
Streptococcus equi subsp. zooepidemicus (SEZ) is an important zoonotic agent. Here, a virulence-attenuated strain M35246 derived from natural variation of wild-type SEZ ATCC35246 was found. M35246 showed a deletion of 25 contiguous genes as well as a loss-of-function mutation in covS. Subsequently, a 25-gene-deleted strain (ΔPI), a covS-mutant strain (McovS), and relevant complementary strains were constructed and investigated. M35246 and McovS were significantly less encapsulated and exhibited poorer anti-phagocytic capacity compared to wild-type SEZ. McovS was significantly more sensitive to β-lactams, aminoglycosides, macrolides, and lincosamides than wild-type SEZ. M35246, McovS, and ΔPI exhibited an increase in median lethal dose (LD50) in mice by 105, 105, and 5 times when compared to wild-type SEZ, respectively. Neither M35246 nor McovS were isolated from mice 48 h after being challenged with approximately 2 000 times the LD50 of wild-type SEZ. Transcriptome analysis showed that 668 significantly differentially expressed genes existed between McovS and wild-type SEZ. Numerous virulence factor-encoding genes and anabolic-related genes in McovS that were involved in anti-phagocytosis, capsule formation, pathogenicity, and antibiotic resistance were downregulated significantly relative to the wild-type strain. This study revealed that the CovS plays a vital role in the establishment of SEZ virulence