Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Ensiling vine tea (Ampelopsis grossedentata) residue with Lactobacillus plantarum inoculant as an animal unconventional fodder
WANG Yuan, ZHOU Hong-zhang, GAO Yu, WANG Ning-wei, LIU Han, YANG Fu-yu, NI Kui-kui
2023, 22 (4): 1172-1183.   DOI: 10.1016/j.jia.2022.10.001
Abstract221)      PDF in ScienceDirect      

The study aimed to evaluate the application of silage fermentation in storing vine tea residue.  Dynamic of fermentation-related product, chemical component and bacterial community of silage with or without Lactobacillus plantarum F1 inoculant were analyzed.  The results showed that F1 treatment had a significant (P<0.05) impact on the lactic acid and ammoniacal nitrogen concentrations and pH value.  Total phenols were well preserved in both treatments.  After 30 days of ensiling, Lplantarum occupied the majority of Lactobacillus genus (more than 95%) in all silage samples.  Spearman revealed a positive (P<0.01) correlation between lactic acid content and Lactobacillus.  Overall, ensiling vine tea residue with Lplantarum can effectively preserve the nutritional attributes and total phenols, which offers a new insight into utilizing vine tea residue.

Reference | Related Articles | Metrics
The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence
XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie
2023, 22 (2): 568-584.   DOI: 10.1016/j.jia.2022.08.109
Abstract314)      PDF in ScienceDirect      

Streptococcus equi subsp. zooepidemicus (SEZ) is an important zoonotic agent.  Here, a virulence-attenuated strain M35246 derived from natural variation of wild-type SEZ ATCC35246 was found.  M35246 showed a deletion of 25 contiguous genes as well as a loss-of-function mutation in covS.  Subsequently, a 25-gene-deleted strain (ΔPI), a covS-mutant strain (McovS), and relevant complementary strains were constructed and investigated.  M35246 and McovS were significantly less encapsulated and exhibited poorer anti-phagocytic capacity compared to wild-type SEZ.  McovS was significantly more sensitive to β-lactams, aminoglycosides, macrolides, and lincosamides than wild-type SEZ.  M35246, McovS, and ΔPI exhibited an increase in median lethal dose (LD50) in mice by 105, 105, and 5 times when compared to wild-type SEZ, respectively.  Neither M35246 nor McovS were isolated from mice 48 h after being challenged with approximately 2 000 times the LD50 of wild-type SEZ.  Transcriptome analysis showed that 668 significantly differentially expressed genes existed between McovS and wild-type SEZ.  Numerous virulence factor-encoding genes and anabolic-related genes in McovS that were involved in anti-phagocytosis, capsule formation, pathogenicity, and antibiotic resistance were downregulated significantly relative to the wild-type strain.  This study revealed that the CovS plays a vital role in the establishment of SEZ virulence

Reference | Related Articles | Metrics
Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)
Jing WAN, HUANG Cong, LI Chang-you, ZHOU Hong-xu, REN Yong-lin, LI Zai-yuan, XING Long-sheng, ZHANG Bin, QIAO Xi, LIU Bo, LIU Cong-hui, XI Yu, LIU Wan-xue, WANG Wen-kai, QIAN Wan-qiang, Simon MCKIRDY, WAN Fang-hao
2021, 20 (3): 646-663.   DOI: 10.1016/S2095-3119(20)63367-6
Abstract181)      PDF in ScienceDirect      
The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is native to the Americas.  It has rapidly invaded 47 African countries and 18 Asian countries since the first detection of invasion into Nigeria and Ghana in 2016.  It is regarded as a super pest based on its host range (at least 353 host plants), its inherent ability to survive in a wide range of habitats, its strong migration ability, high fecundity, rapid development of resistance to insecticides/viruses and its gluttonous characteristics.  The inherently superior biological characteristics of FAW contribute to its invasiveness.  Integrated pest management (IPM) of FAW has relied on multiple applications of monitoring and scouting, agricultural control, chemical pesticides, viral insecticides, sex attractants, bio-control agents (parasitoids, predators and entomopathogens) and botanicals.  Knowledge gaps remain to be filled to: (1) understand the invasive mechanisms of S. frugiperda; (2) understand how to prevent its further spread and (3) provide better management strategies.  This review summarizes the biological characters of FAW, their association with its invasiveness and IPM strategies, which may provide further insights for future management.
Reference | Related Articles | Metrics
Evaluating the efficacy of an attenuated Streptococcus equi ssp. zooepidemicus vaccine produced by multi-gene deletion in pathogenicity island SeseCisland_4
MA Fang, WANG Guang-yu, ZHOU Hong, MA Zhe, LIN Hui-xing, FAN Hong-jie
2019, 18 (5): 1093-1102.   DOI: 10.1016/S2095-3119(18)62133-1
Abstract147)      PDF in ScienceDirect      
Streptococcus equi ssp. zooepidemicus (SEZ) is a pathogen associated with a wild range of animal species.  Frequent outbreaks have occurred in recent years in pigs, horses, goats and dogs which is liable to infect humans.  There is a lack of efficient vaccines against this disease and the occurrence of antibiotic resistance may render drug therapies ineffective.  In this study, gene deletion mutant (ΔSEZ) in pathogenicity islands SeseCisland_4 was constructed.  The mutant ΔSEZ had a 52-fold decrease in 50% lethal dose (LD50) and had less capacity to adhere epithelial cells.  Importantly, immunization of mice with attenuated vaccine ΔSEZ at the dose of 102 colony-forming units (CFU) mL–1 elicited a significant humoral antibody response, with an antibody titer of 1:12 800.  Therefore, 102 CFU mL–1 might be used as the appropriate immune dose for the attenuated vaccine ΔSEZ, which provided mice with efficient protection against virulent SEZ.  In addition, the hyperimmune sera against 102 CFU mL–1 attenuated vaccine ΔSEZ could confer significant protection against virulent SEZ infection in the passive immunization experiment and exhibited efficient bactericidal activity in the whole blood assay.  Meanwhile, no viable bacteria was detected in blood when mice were immunized with ΔSEZ at the dose of 102 CFU mL–1 via hypodermic injection.  Thereafter, the mutant ΔSEZ at the dose of 102 CFU mL–1 could confer significant protection in mice and had less negative effects on host, which could be an effective attenuated vaccine candidate for the prevention of SEZ.
Reference | Related Articles | Metrics
Identification and Characterization of Putative Virulent Genes in Streptococcus equi ssp. zooepidemicus
ZHOU Hong, MA Zhe, YUAN Jin , FAN Hong-jie
2013, 12 (2): 327-333.   DOI: 10.1016/S2095-3119(13)60232-4
Abstract1371)      PDF in ScienceDirect      
Suppression subtractive hybridization (SSH) was performed with virulent strain ATCC35246 and avirulent strain ST171 to identify novel genes associated with virulence in Streptococcus equi ssp. zooepidemicus (SEZ). There were fourteen genomic regions that only presented in virulent strain ATCC35246. These regions encoded 14 proteins, some of them were homologous to proteins associated with cellular surface structure, molecular synthesis, energy metabolism, regulation, transport systems, and other unknown functions. Primers for 6 particular regions were designed from the already published SEZ sequence. Then, we used PCR to evaluate the distribution and conservation of these 6 DNA fragments in various SEZ strains collected from different sources, regions, groups, and times. The results showed that these 6 DNA fragments were widely distributed in SEZ strains, yet they were not existence in the avirulent strain ST171. Moreover, these fragments could not be detected in other Streptococcus groups.
Reference | Related Articles | Metrics