Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China
GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong
2023, 22 (7): 2233-2247.   DOI: 10.1016/j.jia.2022.12.005
Abstract206)      PDF in ScienceDirect      
Green manure (GM) has been used to support rice production in southern China for thousands of years. However, the effects of GM on soil carbon sequestration (CS) and the carbon footprint (CF) at a regional scale remain unclear. Therefore, we combined the datasets from long-term multisite experiments with a meta-analysis approach to quantify the potential of GM to increase the CS and reduce the CF of paddy soils in southern China. Compared with the fallow– rice practice, the GM–rice practice increased the soil C stock at a rate of 1.62 Mg CO2-eq ha–1 yr–1 and reduced chemical N application by 40% with no loss in the rice yield. The total CF varied from 7.51 to 13.66 Mg CO2-eq ha–1 yr–1 and was dominated by CH4 emissions (60.7–81.3%). GM decreased the indirect CF by 31.4% but increased the direct CH4 emissions by 19.6%. In the low and high CH4 emission scenarios, the CH4 emission factors of GM (EFgc) were 5.58 and 21.31%, respectively. The greater soil CS offset the increase in GM-derived CF in the low CH4 scenario, but it could not offset the CF increase in the high CH4 scenario. A trade-off analysis also showed that GM can simultaneously increase the CS and reduce the total CF of the rice production system when the EFgc was less than 9.20%. The variation in EFgc was mainly regulated by the GM application rates and water management patterns. Determining the appropriate GM application rate and drainage pattern warrant further investigation to optimize the potential of the GM–rice system to increase the CS and reduce the total CF in China.
Reference | Related Articles | Metrics
The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China
ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong
2023, 22 (5): 1529-1545.   DOI: 10.1016/j.jia.2022.09.025
Abstract260)      PDF in ScienceDirect      
The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China. However, its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear. In the present study, the effect of GM, RS, and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment. The experiment included six treatments, i.e., winter fallow (WF) without RS return (Ctrl), WF with 50% RS return (1/2RS), WF with 100% RS return (RS), GM without RS return (GM), GM with 50% RS return (GM1/2RS) and GM with 100% RS return (GMRS). The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%, respectively) than in the RS treatment, while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%). The concentration of SOC in microaggregates (0.053–0.25 mm) and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually. The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment, whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates, microaggregates, and bulk was lower in the GMRS treatment than in the RS treatment. The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment. The GMRS treatment had strong positive effects on iPOC in small macroaggregates, suggesting that SOC was transferred from fLOC to iPOC. In conclusion, co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.
Reference | Related Articles | Metrics
Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco
LIANG Hai, FU Li-bo, CHEN Hua, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong
2023, 22 (4): 1199-1215.   DOI: 10.1016/j.jia.2022.08.043
Abstract246)      PDF in ScienceDirect      

Green manure–crop rotation is a sustainable approach to protect crops against diseases and improve yield.  However, the mechanism by which green manuring manipulates the crop-associated microbial community remains to be elucidated.  In this study, we explored the horizontal processes of bacterial communities in different compartments of the soil–root interface (bulk soil, rhizosphere soil, rhizoplane and endosphere) of tobacco by performing a field experiment including four rotation practices, namely, tobacco rotated with smooth vetch, ryegrass, radish, and winter fallow (without green manure).  Results showed that the co-occurrence networks constructed by adjacent compartments of the soil–root interface with green manuring had more edges than without green manuring, indicating  dramatic microbial interactions.  Green manuring increased the dispersal-niche continuum index between bulk soil and other compartments, indicating that it facilitated the horizontal dispersal of microbes.  For the different green manuring practices, the neutral community model explained 24.6–27.6% of detection frequency for bacteria, and at least one compartment under each practice had a normalized stochasticity ratio higher than the 50% boundary point, suggesting that the deterministic and stochastic processes jointly shaped the tobacco microbiome.  In conclusion, green manuring generally facilitates bacterial community dispersal across different compartments and enhances potential interactions among adjacent compartments.  This study provides empirical evidence for understanding the microbiome assembly under green manure–crop rotation.

Reference | Related Articles | Metrics
Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China
LIU Rui, ZHOU Guo-peng, CHANG Dan-na, GAO Song-juan, HAN Mei, ZHANG Jiu-dong, SUN Xiao-feng, CAO Wei-dong
2022, 21 (4): 1177-1187.   DOI: 10.1016/S2095-3119(21)63674-2
Abstract162)      PDF in ScienceDirect      
To ascertain the possibility of cultivating maize using biological nitrogen fixation (BNF) by leguminous green manure crops in maize/leguminous green manure intercropping systems, BNF and nitrogen (N) transfer were studied in Xining and Wuwei, two typical northwestern Chinese cities.  The experimental treatments included monocultured maize, monocultured green manures (hairy vetch and common vetch), and their intercropping systems.  The proportions of N derived from the atmosphere (%Ndfa) in intercropping systems were not significantly different from that in monocultured green manure systems at either experimental site, except for that in hairy vetch (HV) in Xining.  The amount of N derived from the atmosphere (Ndfa) of common vetch (CV) significantly decreased from 1.16 and 1.10 g/pot in monoculture to 0.77 and 0.55 g/pot when intercropped with maize, in Xining and Wuwei, respectively, and the Ndfa of HV when intercropped significantly decreased from 1.02 to 0.48 g/pot in Xining.  In the intercropping systems in Xining and Wuwei, the amounts of N transferred (Ntransfer) from CV to maize were 21.54 and 26.81 mg/pot, accounting for 32.9 and 5.9% respectively of the N accumulation in maize, and the values of Ntransfer from HV to maize were 39.61 and 46.22 mg/pot, accounting for 37.0 and 23.3%, respectively, of the N accumulation in maize.  Path analysis showed that soil nutrient and green manure biomass were mainly related to Ndfa, and that δ15N had a primary relationship with Ntransfer.  We found that 5.9–37.0% of N accumulation in maize was transferred from green manures, and that the N transfer ability to maize of HV was higher than that of CV.  In conclusion, intercropping with leguminous green manures provided a feasible way for maize to effectively utilize biologically fixed N.
Reference | Related Articles | Metrics