Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Heat stability of winter wheat depends on cultivars, timing and protective methods
LI Qiang, CHANG Xu-hong, MENG Xiang-hai, LI Ding, ZHAO Ming-hui, SUN Shu-luan, LI Hui-min, QIAO Wen-chen
2020, 19 (8): 1984-1997.   DOI: 10.1016/S2095-3119(19)62760-7
Abstract146)      PDF in ScienceDirect      
Heat stress negatively affects wheat production in many regions of the world.  At present, sensitivity to heat stress remains one of the least understood aspects of wheat genetics and breeding, and measures for preventing heat stress are understudied. In this study, we used three cultivars of winter wheat (GY2018, SL02-1 and SY20) to evaluate the effect of heat stress at different days after anthesis (DAA) on yield and quality.  Heat stability of the cultivars were analyzed and evaluated for the effects of two kinds of regulators on wheat under heat stress conditions.  Heat treatment at 7 DAA led to the most substantial reduction in yield while GY2018 had the best heat stability with respect to yield, and demonstrated the most positive effects on several quality traits including protein content, sedimentation volume and glutenin and gliadin contents.  Heat treatment at 14 DAA had the least reduction in yield, while SY20 had the best heat stability with respect to yield and heat treatment had minimal effects on quality.  Heat treatment at 21 DAA had only a limited effect on yield, while SL02-1 had the best heat stability with respect to yield, but it showed the most negative effects on quality.  Stable time at 14 DAA and protein content at 21 DAA can be used as indicators for detecting the stability of quality under heat stress.  Among the three studied cultivars, SY20 was the most sensitive to heat stress with the stable time decreasing from 26.4 to 9.1 min, a higher sedimentation volume at 7 DAA, and a lower γ-gliadin content which increased 2.4-fold under high-temperature treatment.  The addition of various regulators had different effects: potassium dihydrogen phosphate (KDP) was more protective of yield with heat stress at 7 DAA, while Duntianbao (DTB) had better effects on quality with heat stress at 21 DAA.
 
Reference | Related Articles | Metrics
Evaluation of a new method for quantification of heat tolerance in different wheat cultivars
LI Qiang, WANG Zheng-rui, LI Ding, WEI Jian-wei, QIAO Wen-chen, MENG Xiang-hai, SUN Shu-luan, LI Hui-min, ZHAO Ming-hui, CHEN Xiu-min, ZHAO Feng-wu
2018, 17 (04): 786-795.   DOI: 10.1016/S2095-3119(17)61716-7
Abstract643)      PDF in ScienceDirect      
Heat stress seriously affects wheat production in many regions of the world.  At present, heat tolerance research remains one of the least understood fields in wheat genetics and breeding and there is a lack of effective methods to quantify heat stress and heat tolerance in different wheat cultivars.  The objective of this study was to use various wheat cultivars to evaluate stress intensity (δ) and a new method for quantification of heat tolerance and compare this technique with three other currently utilized methods.  This new parameter for heat tolerance quantification is referred to as the heat tolerance index (HTI) and is an indicator of both yield potential and yield stability.  Heat treatments were applied in a controlled setting when anthesis had been reached for 80% of the wheat.  The stress intensity evaluation indicated heat shock was the main factor associated with kernel weight reduction while grain yield reduction was mainly associated with chronic high temperature.  The methods evaluation showed that a temperature difference of 5°C from natural temperatures was a suitable heat treatment to compare to the untreated controls.  HTI was positively correlated with yield under heat stress (r=0.8657, δ2010=0.15, in 2009–2010; r=0.8418, δ2011=0.20, in 2010–2011; P<0.01), and negatively correlated with yield reduction rate (r=–0.8344, in 2009–2010; r=–0.7158, in 2010–2011; P<0.01).  The results of this study validated the use of HTI and temperature difference control for quantifying wheat heat tolerance that included the yield potential and the stability of different wheat cultivars under heat stress.  Additionally, 10 wheat cultivars showed high HTI and should be further tested for their heat confirming characteristics for use in wheat heat tolerance breeding.
Reference | Related Articles | Metrics
Experimental and genomic evidence for the indica-type cytoplasmic effect in Oryza sativa L. ssp. japonica
LIU You-hong, TANG Liang, XU Quan, MA Dian-rong, ZHAO Ming-hui, SUN Jian, CHEN Wen-fu
2016, 15 (10): 2183-2191.   DOI: 10.1016/S2095-3119(15)61190-X
Abstract1501)      PDF in ScienceDirect      
    Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, five high yield rice cultivars (Oryza sativa L. ssp. japonica) in large-scale cultivation in northeast China were determined to possess Oryza sativa L. ssp. indica-type cytoplasm using cytoplasmic subspecies-specific molecular markers. This was confirmed by cytoplasmic genome-wide single nucleotide polymorphisms (SNPs) and functional gene sequencing. Two of these five japonica cultivars were core breeding parents with high yield and the other three were super-high-yield varieties registered by the Ministry of Agriculture of China. We constructed nuclear substitution lines to further demonstrate whether and how this indica-type cytoplasm contributed to yield improvement by comparing yield components. The results showed that under the same japonica nuclear background, the lines with indica-type cytoplasm had a significant decrease in tillers in exchange for increased grain number per panicle compared with their recurrent parents. Our results implied that botanical basis of this cytoplasmic effect was to reduce the plant’s branching differentiation to produce more floral organs under the constant nutrition. Our findings open another door for the utilization of inter-subspecific hybridization for the improvement of rice cultivar.
Reference | Related Articles | Metrics
Effect of Phosphorus Fertilization to P Uptake and Dry Matter Accumulation in Soybean with Different P Efficiencies
AO Xue, GUO Xiao-hong, ZHU Qian, ZHANG Hui-jun, WANG Hai-ying, MA Zhao-hui, HAN , Xiao-ri , ZHAO Ming-hui , XIE Fu-ti
2014, 13 (2): 326-334.   DOI: 10.1016/S2095-3119(13)60390-1
Abstract2376)      PDF in ScienceDirect      
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference of biomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
Reference | Related Articles | Metrics
Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean
AO Xue, ZHAO Ming-hui, ZHU Qian, LI Jie, ZHANG Hui-jun, WANG Hai-ying, YU Cui-mei, LI Chunhong, YAO Xing-dong, XIE Fu-ti , HAN Xiao-ri
2013, 12 (7): 1173-1182.   DOI: 10.1016/S2095-3119(13)60444-X
Abstract1486)      PDF in ScienceDirect      
Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.
Reference | Related Articles | Metrics