Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

MicroRNA-370-5p inhibits pigmentation and cell proliferation by downregulating mitogen-activated protein kinase kinase kinase 8 expression in sheep melanocytes

JI Kai-yuan, WEN Ru-jun, WANG Zheng-zhou, TIAN Qian-qian, ZHANG Wei, ZHANG Yun-hai
2023, 22 (4): 1131-1141.   DOI: 10.1016/j.jia.2023.02.018
Abstract224)      PDF in ScienceDirect      

In mammals, microRNAs (miRNAs) play key roles in multiple biological processes by regulating the expression of target genes.  Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors; however, its function remains unclear.  In this study, we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation (P<0.01), tyrosinase activity (P=0.001) and significantly reduced (P<0.001) melanin production.  Functional prediction revealed that the 3´-untranslated region (UTR) of MAP3K8 has a putative miR-370-5p binding site, and the interaction between these two molecules was confirmed using luciferase reporter assays.  In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.  The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits (P<0.01) MAP3K8 expression via direct targeting of its 3´ UTR.  Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition (P<0.01) of melanocyte proliferation and significant reduction (P<0.001) in melanin production, which is consistent with our observations for miR-370-5p.  Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA (containing sites for the targeted binding to miR-370-5p) was significantly rescued (P≤0.001), which subsequently promoted significant increases in cell proliferation (P<0.001) and melanin production (P<0.01).  Collectively, these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8.  

Reference | Related Articles | Metrics
miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells
ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui
2022, 21 (4): 1137-1145.   DOI: 10.1016/S2095-3119(21)63766-8
Abstract188)      PDF in ScienceDirect      
MicroRNA (miRNA) has vital regulatory effects on the proliferation, differentiation and secretion of ovarian granulosa cells, but the role of miR-99a-5p in goat ovarian granulosa cells (GCs) is unclear.  Both miR-99a-5p and Frizzled-5 (FZD5) were found to be expressed in GCs in goat ovaries via fluorescence in situ hybridization and immunohistochemistry, respectively, and FZD5 was verified (P<0.001) as a target gene of miR-99a-5p by double luciferase reporter gene experiments.  Furthermore, FZD5 mRNA and protein expression were both found to be regulated (P<0.05) by miR-99a-5p in GCs.  Moreover, the overexpression of miR-99a-5p or knockdown of FZD5 suppressed (P<0.05) estradiol and progesterone secretion from the GCs, as determined by ELISA.  In summary, miR-99a-5p inhibits target gene FZD5 expression and estradiol and progesterone synthesis in GCs.  Our study thus provides seminal data and new insights into the regulatory mechanisms of follicular development in the goat and other animals.
Reference | Related Articles | Metrics
Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus
LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong
2021, 20 (1): 212-226.   DOI: 10.1016/S2095-3119(20)63268-3
Abstract217)      PDF in ScienceDirect      
Skeletal muscle accounts for about 40% of mammalian body weight, the development of which is a dynamic, complex and precisely regulated process that is critical for meat production. We here described the transcriptome expression profile in 21 goat samples collected at 7 growth stages from fetus to kid, including fetal 45 (F45), 65 (F65), 90 (F90), 120 (F120), and 135 (F135) days, and birth 1 (B1) day and 90 (B90) days kids.  Paraffin sections combined with RNA-seq data of the 7 stages divided the transcriptomic functions of skeletal muscle into 4 states: before F90, F120, F135 and B1, and B90.  And the dynamic expression of all 4 793 differentially expressed genes (DEGs) was identified.  Furthermore, DEGs were clustered by weighted gene correlation network analysis into 4 modules (turquoise, grey, blue and brown) that corresponded to these 4 states.  Functional and pathway analysis indicated that the active genes in the stages before F90 (turquoise) were closely related to skeletal muscle proliferation.  The DEGs in the F120-related module (grey) were found to participate in the regulation of skeletal muscle structure and skeletal muscle development by regulating tRNA.  The brown module (F135 and B1) regulated fatty acid biological processes to maintain the normal development of muscle cells.  The DEGs of B90 high correlation module (blue) were involved the strengthening and power of skeletal muscle through the regulation of actin filaments and tropomyosin.  Our current data thus revealed the internal functional conversion of the goat skeletal muscle in the growth from fetus to kid.  The results provided a theoretical basis for analyzing the involvement of mRNA in skeletal muscle development.
 
Reference | Related Articles | Metrics
18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development
XU Teng-teng, ZHANG Meng-ya, LIU Qiu-chen, WANG Xin, LUO Peng-fei, LIU Tong, YAN Ye-lian, ZHOU Na-ru, MA Yang-yang, YU Tong, LI Yun-sheng, CAO Zu-bing, ZHANG Yun-hai
DOI: 10.1016/j.jia.2023.10.013 Online: 19 October 2023
Abstract96)      PDF in ScienceDirect      

N6-methyladenosine (m6A) plays a key role in mammalian early embryonic development and cell lineage differentiation. However, the role and mechanisms of 18S ribosomal RNA (rRNA) m6A methyltransferase METTL5 in early embryonic development remain unclear. Here, we found that 18S rRNA m6A methyltransferase METTL5 plays an important role in porcine early embryonic development. METTL5 knockdown and overexpression significantly reduced the developmental efficiency of porcine early embryos and impaired cell lineage allocation. METTL5 knockdown apparently decreased the global translation efficiency in blastocyst, while METTL5 overexpression increased the global translation efficiency. Furthermore, METTL5 knockdown did not affect the abundance of CDX2 mRNA, but resulted in a significant reduction in CDX2 protein levels. Moreover, the low developmental efficiency and abnormal lineage distribution of METTL5 knockdown embryos could be rescued by CDX2 overexpression. Collectively, our results demonstrated that 18S rRNA methyltransferase METTL5 regulates porcine early embryonic development via modulating the translation of CDX2.

Reference | Related Articles | Metrics
circKIF27 inhibits melanogenesis and proliferation by targeting miR-129-5p/TGIF2 pathway in goat melanocytes
JI Kai-yuan, ZHAO Yi-we, YUAN Xin, LIANG Chun-e, ZHANG Xue-qing, TIAN Wen-li, YU Tong, MA Yang-yang, LING Ying-hui, ZHANG Yun-hai
DOI: 10.1016/j.jia.2024.02.008 Online: 12 March 2024
Abstract39)      PDF in ScienceDirect      
Skin and hair pigmentation in animals involve intricate regulatory processes. Circular RNA-microRNA (circRNA-miRNA) networks play vital roles in various biological processes, although their involvement in pigmentation has been underexplored. This study focused on circKIF27 expression, which differs significantly in melanocytes isolated from white and brown Boer coat-colored skin, yet its function remains unclear. Here, we investigated the roles of circKIF27 in melanocytes. In situ hybridization assays demonstrated that circKIF27 is expressed in the cytoplasm of melanocytes. qRT-PCR results revealed differential expression levels of circKIF27 in various tissues of male and female goats. Functional analysis showed that circKIF27 overexpression in melanocytes significantly reduces melanin production (P<0.01) and inhibits cell proliferation (P<0.0001). Bioinformatics analysis identified a putative miR-129-5p binding site on circKIF27, and luciferase reporter assays confirmed their interaction. Overexpression of miR-129-5p in melanocytes enhances melanin production (P<0.01) and promotes cell proliferation (P<0.05). Further analysis revealed that TGIF2 possesses two potential miR-129-5p binding sites, and miR-129-5p overexpression in melanocytes significantly inhibits TGIF2 expression (P<0.0001), suggesting a targeted regulatory relationship between these two molecules. Silencing TGIF2 expression via siRNA-TGIF2 transfection leads to increased melanocyte proliferation (P<0.0001) and increased melanin production (P<0.01). These findings highlight the involvement of the circRNA-miRNA network in pigmentation, offering new insights into the molecular mechanisms underlying pigmentation and guiding animal hair color breeding strategies.
Reference | Related Articles | Metrics