Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide
GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin
2022, 21 (6): 1830-1837.   DOI: 10.1016/S2095-3119(21)63882-0
Abstract244)      PDF in ScienceDirect      
Genetic diversity, population structure, and population expansion of goats worldwide (4 165 individuals from 196 breeds) were analyzed using published mitochondrial DNA (mtDNA) D_loop hypervariable region sequences. Results showed that 2 409 haplotypes and 301 polymorphic sites were present within the 401-bp length D_loop region, the nucleotide diversity (Pi) was 0.03471, and the haplotype diversity (Hd) was 0.9983. Phylogenetic analysis revealed that 98.92% of haplotypes were divided into six obvious clusters, consistent with the classification of the known mitochondrial haplogroups of goats. Haplogroup A accounted for the largest proportion (86%). Interestingly, two unknown divisions (Unknown I and Unknown II) were discovered from goats in Southwest China, suggesting that Southwest China has unique maternal haplogroups. Analysis of molecular variance (AMOVA) and the average number of pairwise differences between populations (PiXY) indicated that geographical variation was small but significant. Neutrality tests (Tajima’s D and Fu’s FS tests) and mismatch distribution showed that haplogroups B, C, and G had expansion histories. In addition, the phylogenetic relationship between domestic and wild goats suggested that Capra aegagrus is the most likely wild ancestor and may have participated in the domestication of ancestral populations of A, B, C, and F haplogroups. A meta-analysis on the mtDNA sequences of goats from international databases was conducted to analyze goats’ genetic diversity, population structure, and matrilineal system evolution worldwide. The results may help further understand the domestication history and gene flow of goats worldwide.
Reference | Related Articles | Metrics
Effects of the Residues of Cuscuta campestris and Mikania micrantha on Subsequent Plant Germination and Early Growth
LI Feng-lan, LI Ming-guang, ZAN Qi-jie, GUO Qiang, ZHANG Wei-yin, WU Zhi, WANG Yong-jun
2012, 12 (11): 1852-1860.   DOI: 10.1016/S1671-2927(00)8720
Abstract1574)      PDF in ScienceDirect      
Cuscuta campestris, a dodder, can parasitize and suppress a scrambling herbaceous to semi-woody perennial vine, Mikania micrantha, one of the most destructive weeds in the world. To assess the effects of the mixed residue of C. campestris and M. micrantha on the subsequent plant community, we conducted a one-year experiment on the germination and seedling growth of subsequent plant community after the application of C. campestris. Seven treatments of varying proportions of C. campestris and M. micrantha residue on 21 subject trees and shrubs, which were commonly found in South China, resulted in a germination rate of 35.3% for all 8715 seeds from 18 species, ranging from 5.7 to 81.9%; the remaining 3 species failed to germinate. ANOVA analysis showed that the residue did not affect the germination, growth, or mortality of the trees and shrubs. The germinated C. campestris seeds from the residue coiled the seedlings of most of the species, but less than 4% host death caused by C. campestris. In addition, the residue did not affect the germination of the herbaceous seedlings originating from the loam, and the similarity coefficients of the germinated seedlings between the treatments were very high. These results suggested that the residue had no negative impact on the germination and early seedling stages of the tree, shrub and grass species of the subsequent plant community. The use of C. campestris residue had a positive effect on the growth of M. micrantha, but it did not change the trend of M. micrantha being suppressed because re-parasitization occurred soon after the growth restarted. No negative effect was detected on the other species as a result of the parasitization of C. campestris or by the use of the mixed residue. This suggests that C. campestris is likely to be an effective and promising ecologically safe native herbaceous agent for controlling M. micrantha.
Reference | Related Articles | Metrics