Isolation and functional analysis of SrMYB1, a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana
SrUGT76G1, the most well-studied diterpene glycosyltransferase in Stevia rebaudiana, is key to the biosynthesis of economically important steviol glycosides (SGs). However, the molecular regulatory mechanism of SrUGT76G1 has rarely been explored. In this study, we identified a MYB transcription factor, SrMYB1, using a yeast one-hybrid screening assay. SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity. The transcript of SrMYB1 is predominantly accumulated in flowers, but is also present at a lower level in leaves. Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment (+50–(–141)) of the SrUGT76G1 promoter. Furthermore, we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus. Taken together, our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S. rebaudiana.
Under appropriate culture conditions, plant cells can regenerate new organs or even whole plants. De novo organ regeneration is an excellent biological system, which usually requires additional growth regulators, including auxin and cytokinin. Nitrate is an essential nutrient element for plant vegetative and reproductive development. It has been reported that nitrate is involved in auxin biosynthesis and transport throughout the growth and development of plants. In this study, we demonstrated that the ectopic expression of the MdNLP7 transcription factor in Arabidopsis could regulate the regeneration of root explants. MdNLP7 mainly participated in the regulation of callus formation, starting with pericycle cell division, and mainly affected auxin distribution and accumulation in the regulation process. Moreover, MdNLP7 upregulated the expression of genes related to auxin biosynthesis and transport in the callus formation stage. The results demonstrated that MdNLP7 may play a role in the nitrate-modulated regeneration of root explants. Moreover, the results revealed that nitrate–auxin crosstalk is required for de novo callus initiation and clarified the mechanisms of organogenesis.