Radopholus similis (Cobb 1893) Thorne (1949) is a destructive migratory endoparasitic plant nematode. In this study, the pathogenic process of R. similis infection in Nicotiana benthamiana (tobacco) was studied using quartz sand culture in laboratory. The results showed that R. similis mainly parasitised the root cortex, leading to cortical cell decomposition and tissue decay. We optimised the inoculation conditions to establish a method for determining the pathogenicity of R. similis as follows: (1) a glass culture tube was filled with quartz sand (about 1/3 of the height) and sterilised twice; (2) 20-day-old N. benthamiana seedlings were transplanted into test tubes and cultivated for 10 days at (25±1)°C; (3) R. similis female nematodes were inoculated in the root rhizosphere at a rate of 150 nematodes per plant; (4) the number of nematodes, disease severity, and growth of the plant at 30 days post-inoculation (dpi) were determined. The pathogenicity of eight R. similis populations from different hosts was determined, which proved the feasibility of this method.
Geranylgeranyl pyrophosphate synthase (GGPS) plays an important role in the biosynthesis of carotenoids. In a previous study, the IbGGPS gene was isolated from a sweetpotato, Ipomoea batatas (L.) Lam., line Nongdafu 14 with high carotenoid contents, but its role and underlying mechanisms in carotenoid biosynthesis in sweetpotato were not investigated. In the present study, the IbGGPS gene was introduced into a sweetpotato cv. Lizixiang and the contents of β-carotene, β-cryptoxanthin, zeaxanthin and lutein were significantly increased in the storage roots of the IbGGPS-overexpressing sweetpotato plants. Further analysis showed that IbGGPS gene overexpression systematically up-regulated the genes involved in the glycolytic, 2-C-methyl-D-erythritol-4-phosphate (MEP) and carotenoid pathways, which increased the carotenoid contents in the transgenic plants. These results indicate that the IbGGPS gene has the potential for use in improving the carotenoid contents in sweetpotato and other plants.