Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Blue light induces leaf color change by modulating carotenoid metabolites in orange-head Chinese cabbage (Brassica rapa L. ssp. pekinensis)
ZHANG Rui-xing, ZHANG Ni-nan, WANG Ya-xiu, Khan ABID, MA Shuai, BAI Xue, ZENG Qi, PAN Qi-ming, LI Bao-hua, ZHANG Lu-gang
2023, 22 (11): 3296-3311.   DOI: 10.1016/j.jia.2023.09.029
Abstract188)      PDF in ScienceDirect      

Carotenoids are involved in the formation of plant leaf color as well as photosystem photoprotection.  This study showed that blue light significantly induced up-regulation of the total carotenoid content in the inner leaves of orange-head Chinese cabbage (OHCC).  Furthermore, the transcriptomic analysis revealed that blue light treatment induced up-regulation of genes in photosynthesis (BrHY5-2, BrCOP1 and BrDET1) and the methylerythritol 4-phosphate pathways (BrGGPS, BrDXS and BrHDR) upstream of the carotenoid metabolic pathway.  Carotenoid metabolomic analysis revealed that the accumulation of several orange and red carotenoids (lycopene, zeaxanthin, β-carotene, lutein, and β-cryptoxanthin) after blue light treatment contributed to the deepening of the leaf coloration, suggesting that short-term blue light treatment could be used to boost nutritional quality.  The light signal gene BrHY5-2 participated in the blue light-induced transcriptional regulation of carotenoid biosynthesis in OHCC.  Overexpression of BrHY5-2 in Arabidopsis significantly increased the total carotenoid content and the sensitivity to blue light.  The above findings revealed new insights about blue-light-induced carotenoid synthesis and accumulation in OHCC lines.  They suggested a new engineering approach to increase the nutritional value of vegetables.

Reference | Related Articles | Metrics
Do cooperatives participation and technology adoption improve farmers’ welfare in China?  A joint analysis accounting for selection bias
YANG Dan, ZHANG Hui-wei, LIU Zi-min, ZENG Qiao
2021, 20 (6): 1716-1726.   DOI: 10.1016/S2095-3119(20)63325-1
Abstract233)      PDF in ScienceDirect      
This study examines the impact of farmers’ cooperatives participation and technology adoption on their economic welfare in China.  A double selectivity model (DSM) is applied to correct for sample selection bias stemming from both observed and unobserved factors, and a propensity score matching (PSM) method is applied to calculate the agricultural income difference with counter factual analysis using survey data from 396 farmers in 15 provinces in China.  The findings indicate that farmers who join farmer cooperatives and adopt agricultural technology can increase agricultural income by 2.77 and 2.35%, respectively, compared with those non-participants and non-adopters.  Interestingly, the effect on agricultural income is found to be more significant for the low-income farmers than the high-income ones, with income increasing 5.45 and 4.51% when participating in farmer cooperatives and adopting agricultural technology, respectively.  Our findings highlight the positive role of farmer cooperatives and agricultural technology in promoting farmers’ economic welfare.  Based on the findings, government policy implications are also discussed.
Reference | Related Articles | Metrics
Identification of genes involved in regulating MnSOD2 production and root colonization in Bacillus cereus 905
GAO Tan-tan, DING Ming-zheng, LI Yan, ZENG Qing-chao, WANG Qi
2021, 20 (6): 1570-1584.   DOI: 10.1016/S2095-3119(20)63247-6
Abstract124)      PDF in ScienceDirect      
sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) in Bacillus cereus 905 plays an essential role in antioxidative stress, nutrition utilization, rhizosphere and phyllosphere colonization.  However, the genes involved in regulating the sodA2 expression have not been clearly elucidated in B. cereus.  In this study, a genome-wide random insertion mutagenesis was constructed by using transposon TnYLB-1 to identify novel genes regulating the sodA2 expression.  Seven mutants that changed the sodA2 expression at both mRNA and protein levels were finally obtained.  Sequence analysis and BLAST data showed that the genes disrupted by TnYLB-1 in B. cereus 905 shared high conservations with those in the B. cereus type strain, ATCC 14579.  These genes encode heat-inducible transcription repressor, chloride channel protein, recombinase A, ferrous iron transport protein, nucleoside diphosphate kinase, and histidine ammonia-lyase.  Besides, we also provided the evidence that the genes regulating the sodA2 expression could influence colonization ability of B. cereus 905 on wheat roots.  Specifically, those genes downregulating the sodA2 expression significantly reduced bacterial colonization on wheat roots, and mutants with increased MnSOD2 activities could enhance bacterial population densities on wheat roots to a certain degree.  Our work provided information that multiple genes are involved in MnSOD2 production and wheat root colonization.  The molecular regulatory pathways through which these genes modulate the sodA2 expression and root colonization need to be investigated extensively in the future.
Reference | Related Articles | Metrics
Effects of low ambient temperatures and dietary vitamin C supplementation on pulmonary vascular remodeling and hypoxic gene expression of 21-d-old broilers
ZENG Qiu-feng, YANG Xia, ZHENG Ping, ZHANG Ke-ying, LUO Yu-heng, DING Xue-mei, BAI Shi-ping, WANG Jian-ping, XUAN Yue, SU Zhuo-wei
2016, 15 (1): 183-190.   DOI: 10.1016/S2095-3119(14)60968-0
Abstract1855)      PDF in ScienceDirect      
The objective of this study was to evaluate the effects of low ambient temperature (LAT) and dietary vitamin C (VC) supplementation on pulmonary vascular remodeling (PVR) and the relative expression of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) mRNA of lungs in 21-d-old broilers. 400 1-d-old male Cobb broilers were assigned randomly to 4 treatments as follows for 21 d: 1) LAT and a basal diet; 2) LAT and a basal diet supplemented with 1 000 mg kg–1 VC (LAT+VC); 3) normal ambient temperature (NAT) and a basal diet; 4) NAT and a basal diet supplemented with 1 000 mg kg–1 VC (NAT+VC). Each treatment was composed of 10 replicates of 10 birds per replicate. Samples of lung were collected after the broilers were killed at d 21. LAT increased the ratio of vessel wall area to vessel total area (WA/TA, %) and mean media thickness in pulmonary arterioles (mMTPA, %) (P<0.05). Dietary VC supplementation decreased mMTPA (P<0.05), but had no effect on the WA/TA. LAT increased (P<0.05) the relative mRNA expression of HIF-1α, VEGF and VEGFR-2, while adding VC to the diet could decrease (P<0.05) their relative mRNA expression. A significant positive correlation existed between the level of VEGF mRNA expression and the value of WA/WT (P<0.05) or mMTPA (P<0.05). These results suggested LAT resulted in pulmonary vascular remodeling, and the increase of HIF-1α, VEGF and VEGFR-2 mRNA expression, and dietary VC supplementation can alleviate pulmonary vascular remodeling in broiler by affecting these gene expression.
Reference | Related Articles | Metrics