Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size
WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen
2021, 20 (7): 1753-1761.   DOI: 10.1016/S2095-3119(20)63343-3
Abstract162)      PDF in ScienceDirect      
Adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) is an annual cultivated leguminous crop commonly grown in Asia and consumed worldwide.  However, there has been limited research regarding adzuki bean genetics, which has prevented the efficient application of genes during breeding.  In the present study, we constructed a high-density genetic map based on whole genome re-sequencing technology and validated its utility by mining QTLs related to seed size.  Moreover, we analyzed the sequences flanking insertions/deletions (InDels) to develop a set of PCR-based markers useful for characterizing adzuki bean genetics.  A total of 2 904 markers were mapped to 11 linkage groups (LGs).  The total length of the map was 1 365.0 cM, with an average distance between markers of 0.47 cM.  Among the LGs, the number of markers ranged from 208 (LG7) to 397 (LG1) and the total distance ranged from 97.4 cM (LG9) to 155.6 cM (LG1).  Twelve QTLs related to seed size were identified using the constructed map.  The two major QTLs in LG2 and LG9 explained 22.1 and 18.8% of the total phenotypic variation, respectively.  Ten minor QTLs in LG4, LG5 and LG6 explained 3.0–10.4% of the total phenotypic variation.  A total of 9 718 primer pairs were designed based on the sequences flanking InDels.  Among the 200 selected primer pairs, 75 revealed polymorphisms in 24 adzuki bean germplasms.  The genetic map constructed in this study will be useful for screening genes related to other traits.  Furthermore, the QTL analysis of seed size and the novel markers described herein may be relevant for future molecular investigations of adzuki bean and will be useful for exploiting the mechanisms underlying legume seed development.
Reference | Related Articles | Metrics
Advances in salinity tolerance of soybean: Genetic diversity, heredity, and gene identification contribute to improving salinity tolerance
CHEN Hua-tao, LIU Xiao-qing, ZHANG Hong-mei, YUAN Xing-xing, GU He-ping, CUI Xiao-yan, CHEN Xin
2018, 17 (10): 2215-2221.   DOI: 10.1016/S2095-3119(17)61864-1
Abstract380)      PDF (725KB)(460)      
Salt stress is one of the major abiotic stresses affecting soybean growth.  Genetic improvement for salt tolerance is an effective way to protect soybean yield under salt stress conditions.  Successful improvement of salt tolerance in soybean relies on identifying genetic variation that confers tolerance in soybean germplasm and subsequently incorporating these genetic resources into cultivars.  In this review, we summarize the progress in genetic diversity and genetics of salt tolerance in soybean, which includes identifying genetic diversity for salt tolerant germplasm; mapping QTLs conferring salt tolerance; map-based cloning; and conducting genome-wide association study (GWAS) analysis in soybean.  Future research avenues are also discussed, including high throughput phenotyping technology, the CRISPR/Cas9 Genome-Editing System, and genomic selection technology for molecular breeding of salt tolerance.
 
Reference | Related Articles | Metrics
Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean
CHEN Hua-tao, CHEN Xin, WU Bing-yue, YUAN Xing-xing, ZHANG Hong-mei, CUI Xiao-yan
2015, 14 (6): 1171-1183.   DOI: 10.1016/S2095-3119(14)60918-7
Abstract2848)      PDF in ScienceDirect      
Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K+/Na+ ratio is the key determinant of tolerance under salt stress. The aims of the present study were to identify and analyse expression patterns of the soybean K+ efflux antiporter (KEA) gene and Na+/H+ antiporter (NHX) gene family, and to explore their roles under abiotic stress. As a result, 12 soybean GmKEAs genes and 10 soybean GmNHXs genes were identified and analyzed from soybean genome. Interestingly, the novel soybean KEA gene Glyma16g32821 which encodes 11 transmembrane domains were extremely up-regulated and remained high level until 48 h in root after the excessive potassium treatment and lack of potassium treatment, respectively. The novel soybean NHX gene Glyma09g02130 which encodes 10 transmembrane domains were extremely up-regulated and remained high level until 48 h in root with NaCl stress. Imaging of subcellular locations of the two new Glyma16g32821-GFP and Glyma09g02130-GFP fusion proteins indicated all plasma membrane localizations of the two novel soybean genes. The 3D structures indicated that the two soybean novel proteins Glyma09g02130 (NHX) and Glyma16g32821 (KEA) all belong to the cation/hydrogen antiporter family.
Reference | Related Articles | Metrics