Natural rubber (NR) is an irreplaceable biopolymer of economic and strategic importance owing to its unique physical and chemical properties. The Pará rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) is currently the exclusive commercial source of NR, and it is primarily grown in plantations restricted to the tropical and subtropical areas of Southeast Asia. However, current Pará rubber production barely meets the sharply increasing global industrial demand for rubber. Petroleum-based synthetic rubber (SR) has been used to supplement the shortage of NR but its industrial performance is not comparable to that of NR. Thus, there is an urgent need to develop new productive rubber crops with broader environmental adaptability. This review summarizes the current research progress on alternative rubber-producing plants, including horticultural plants (Taraxacum kok-saghyz Rodin and Lactuca L. species), woody plants (Parthenium argentatum A. Gray and Eucommia ulmoides Oliv.), and other plant species with potential for NR production. With an emphasis on the molecular basis of NR biosynthesis revealed by a multi-omics approach, we highlight new integrative strategies and biotechnologies for exploring the mechanism of NR biosynthesis with a broader scope, which may accelerate the breeding and improvement of new rubber crops.
Early flowering promotes early maturity, production, and the capacity to counteract biotic and abiotic stresses, making it an important agronomic trait in zucchini. The present study demonstrated that the zucchini inbred line ‘19’ consistently flowered early, taking significantly fewer days to bloom the first female flower (DFF) than the inbred line ‘113’. Genetic analysis revealed that DFF, an inheritable quantitative trait, is controlled by multiple genes. Based on the strategy of quantitative trait locus (QTL) sequencing (QTL-seq) combined with linkage analysis, three QTLs for DFF were identified on chromosomes 4, 11, and 20. This study used additional F2 populations grown under different environmental conditions for QTL mapping analysis of DFF with insertion/deletion (InDel) markers to validate these results. Using the composite interval mapping (CIM) method of R/qtl software, we only identified one major locus under all environmental conditions, located in a 117-kb candidate region on chromosome 20. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, we found that the Cp4.1LG20g08050 gene encoding a RING finger protein may be a candidate gene for the opposite regulation of early flowering in zucchini. In summary, these results lay a foundation for a better understanding of early flowering and improving early flowering-based breeding strategies in zucchini.