Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Characteristics of the microbial communities regulate soil multi-functionality under different cover crop amendments in Ultisol

Guilong Li, Xiaofen Chen, Wenjing Qin, Jingrui Chen, Ke Leng, Luyuan Sun, Ming Liu, Meng Wu, Jianbo Fan, Changxu Xu, Jia Liu
2024, 23 (6): 2099-2111.   DOI: 10.1016/j.jia.2023.11.050
Abstract100)      PDF in ScienceDirect      

The use of cover crops is a promising strategy for influencing the soil microbial consortium, which is essential for the delivery of multiple soil functions (i.e., soil multifunctionality).  Nonetheless, relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.  Here, we assessed the multifunctionality of soils subjected to four cover crop amendments (control, non-amended treatment; RD, radish monoculture; HV, hairy vetch monoculture; and RDHV, radish–hairy vetch mixture), and we investigated the contributions of soil microbial richness, network complexity, and ecological clusters to soil multifunctionality.  Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality, and the radish–hairy vetch mixture rendered the highest enhancement.  We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.  Specifically, specialized microbes in a key ecological cluster (ecological cluster 2) of the soil microbial network were particularly important for maintaining soil multifunctionality.  Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.

Reference | Related Articles | Metrics
Epigenome-wide DNA methylation analysis reveals differentially methylation patterns in skeletal muscle between Chinese Chenghua and Qingyu pigs
WANG Kai, WU Ping-xian, WANG Shu-jie, JI Xiang, CHEN Dong, JIANG An-an, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing
2022, 21 (6): 1731-1739.   DOI: 10.1016/S2095-3119(21)63814-5
Abstract271)      PDF in ScienceDirect      
Chenghua (CH) pig and Qingyu (QY) pig are typical Chinese native fatty breeds.  CH pig is mainly distributed in Chengdu Plain, while QY pig is widely distributed throughout the mountain areas around the Sichuan Basin.  There are significant differences in their phenotypic traits, including body image, growth performance, and meat quality.  This study compared several meat quality traits of CH and QY pigs and conducted a genome-wide DNA methylation analysis using reduced representation bisulfite sequencing (RRBS).  It was observed that the pH at 45 min (pH45min, P=5.22e–13), lightness at 45 min (L*45min, P=4.85e–5), and lightness at 24 h (L*24h, P=3.57e–5) of CH pigs were higher than those of QY pigs.  We detected 10 699 differentially methylated cytosines (DMCs) and 2 760 differentially methylated genes (DMGs) associated with these DMCs.  Functional analysis showed that these DMGs were mainly enriched in the AMPK signaling pathway, Type II diabetes mellitus, Insulin signaling pathway, mTOR signaling pathway, and Insulin resistance.  Furthermore, 15 DMGs were associated with fat metabolism (ACACA, CAB39, CRADD, CRTC2, FASN, and GCK), muscle development (HK2, IKBKB, MTOR, PIK3CD, PPARGC1A, and RPTOR), or meat quality traits (PCK1, PRKAG2, and SLC2A4).  The findings may help to understand further the epigenetic regulation mechanisms of meat quality traits in pigs and provide new basic data for the study of local pigs.
Reference | Related Articles | Metrics
Identifying SNPs associated with birth weight and days to 100 kg traits in Yorkshire pigs based on genotyping-by-sequencing
WU Ping-xian, ZHOU Jie, WANG Kai, CHEN De-juan, YANG Xi-di, LIU Yi-hui, JIANG An-an, SHEN Lin-yuan, JIN Long, XIAO Wei-hang, JIANG Yan-zhi, LI Ming-zhou, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Xue-wei, TANG Guo-qing
2021, 20 (9): 2483-2490.   DOI: 10.1016/S2095-3119(20)63474-8
Abstract130)      PDF in ScienceDirect      
Birth weight (BW) and days to 100 kg (D100) are important economic traits that are both affected by polygenes.  However, the genetic architecture of these quantitative traits is still elusive.  Genotyping-by-sequencing (GBS) data containing a large number of single nucleotide polymorphisms (SNPs) have become a powerful tool in genomic analysis.  To better understand their complex genetic structure, a total of 600 Yorkshire pigs were sequenced using GBS technology.  After quality control, 279 787 SNPs were generated for subsequent genome-wide association study (GWAS).  A total of 30 genome-wide SNPs (P<1.79E–07) were identified for D100.  Furthermore, a total of 22 and 2 suggestive SNPs (P<3.57E–06) were detected for D100 and BW, respectively.  Of these, one locus located on SSC12 (position: 46 226 512 bp) were evaluated to affect both BW and D100 in Yorkshire pigs, indicating the pleiotropism in different traits.  Considering the function of candidate genes, two genes, NSRP1 and DOCK7, were suggested as the most promising candidate genes involved in growth traits.  Thus, use of GBS is able to identify novel variants and potential candidate genes for BW and D100, and provide an opportunity for improving pig growth traits using genomic selection in pigs.
 
Reference | Related Articles | Metrics
Quantitative impact of mating duration on reproduction and offspring sex ratio of Phytoseiulus persimilis (Acari: Phytoseiidae)
Lü Jia-le, ZHANG Bao-he, JIANG Xiao-huan, WANG En-dong, XU Xue-nong
2019, 18 (4): 884-892.   DOI: 10.1016/S2095-3119(18)61974-4
Abstract293)      PDF (3227KB)(166)      
Phytoseiulus persimilis is an important biological control agent, commercially produced worldwide.  To increase understandings of its reproduction, herein we provided quantitative descriptions of the inflation and deflation of its spermathecae as a function of time and copulation duration, and the quantitative impact of copulation termination on volume of spermatheca vesicle, fecundity, and offspring sex ratio.  After mating started, at least one spermatheca started to inflate immediately, but no egg was produced until spermatheca volume reached 1 021 μm3.  Beyond this size, cumulative fecundity was linearly correlated with vesicle volume.  Producing one egg required 36 μm3 volume increase of the vesicle.  Each spermatheca vesicle reached its peak size at the end of mating duration (ca. 2.38 h after mating started), and started to shrink immediately.  In 24 h, ca. 71% individuals had one completely shriveled spermatheca, while in 72 h all individuals had at least one shriveled spermatheca.  The estimated maximum cumulative fecundity per female after a single mating is (69.4±7.7) eggs.  No significant impact of mating termination on offspring sex ratio was observed after mating duration reached 60 min, while higher proportion of male offspring was observed when mating duration is 15 or 30 min.  This study is the first step to investigate possible male impact on offspring sex ratio in P. persimilis.  Our results suggested the number of sperms received during mating be a restriction factor of P. persimilis offspring sex ratio regulation.
Reference | Related Articles | Metrics
Influence of drought hardening on the resistance physiology of potato seedlings under drought stress
ZHANG Shu-han, XU Xue-feng, SUN Ye-min, ZHANG Jun-lian, LI Chao-zhou
2018, 17 (2): 336-347.   DOI: 10.1016/S2095-3119(17)61758-1
Abstract862)      PDF in ScienceDirect      
In this paper, the influence of drought hardening on the growth, development, resistance physiology, leaf microstructure and stomatal behavior of potato seedlings under drought stress was studied, and the mechanism of drought hardening improvement of potato seedling drought resistance was elucidated.  We found that drought stress had several adverse effects on potato seedlings, yet drought hardening alleviated the decrease in relative water content (RWC), net photosynthetic rate (Pn) and chlorophyll content and inhibited the increase in relative electric conductivity and malondialdehyde (MDA) content.  Compared with contrast seedlings, drought-hardened seedlings also had enhanced root vigor, increased antioxidant enzyme activity and higher levels of abscisic acid (ABA), proline (Pro), soluble sugars and polyamines (PAs) under drought stress.  In addition, the stomatal density of potato seedling leaves increased significantly, while the leaf area, stomatal size and stomatal aperture decreased with drought hardening treatment.  These changes led to reduced leaf transpiration rate (Tr) and improved water utilization efficiency (WUE).  The changes in leaf microstructure also had a positive effect on the drought resistance of the drought-hardened potato seedlings. So it can be concluded that through increasing the content of some endogenous hormones, osmotic regulatory substances and the activities of antioxidant enzymes, the resistance physiology of drought-hardened potato seedlings was enhanced. 
Reference | Related Articles | Metrics
Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat
CHEN Jin, ZHENG Meng-jing, PANG Dang-wei, YIN Yan-ping, HAN Ming-ming, LI Yan-xia, LUO Yong-li, XU Xu, LI Yong, WANG Zhen-lin
2017, 16 (08): 1708-1719.   DOI: 10.1016/S2095-3119(16)61589-7
Abstract1015)      PDF in ScienceDirect      
   Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (Triticum aestivum L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear–1, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha–1 in the 2011–2012 and 2012–2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013–2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0–10 cm soil layer compared with the DS and TS. However, significantly lower values were observed in the 10–20 and 20–30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain.
Reference | Related Articles | Metrics
Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain
WANG Yun-qi, XI Wen-xing, WANG Zhi-min, WANG Bin, XU Xue-xin, HAN Mei-kun, ZHOU Shun-li, ZHANG Ying-hua
2016, 15 (10): 2247-2256.   DOI: 10.1016/S2095-3119(16)61408-9
Abstract1673)           
    To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain (NCP) were planted under rainfed and irrigated conditions from 2011 to 2013, and the ear photosynthesis was tested by ear shading. During the past 30 years, grain yield significantly increased, the flag leaf area slightly increased under irrigated condition but decreased significantly under rainfed condition, the ratio of grain weight:leaf area significantly increased, and the contribution of ear photosynthesis to grain yield changed from 33.6 to 64.5% and from 32.2 to 57.2% under rainfed and irrigated conditions, respectively. Grain yield, yield components, and ratio of grain weight:leaf area were positively related with contribution of ear photosynthesis. The increase in grain yield in winter wheat was related with improvement in ear photosynthesis contribution in NCP, especially under rainfed condition.
Reference | Related Articles | Metrics
Key minerals influencing apple quality in Chinese orchard identified by nutritional diagnosis of leaf and soil analysis
WANG Guo-yi, ZHANG Xin-zhong, WANG Yi, XU Xue-feng, HAN Zhen-hai
2015, 14 (5): 864-874.   DOI: 10.1016/S2095-3119(14)60877-7
Abstract1922)      PDF in ScienceDirect      
We investigated the correlation between leaf/soil minerals and fruit quality in apple trees grown in orchards, with the ultimate goal of improving the latter. Leaf mineral nutrients; soil nutrients in the 0–20, 20–40, and 40–60 cm layers; and fruit quality traits in 32 apple orchards in China were monitored for 2 years. Significant factors associated with fruit quality were identified via correlation analysis. An analysis of leaf data revealed that leaf nitrogen (N) and leaf magnesium (Mg) levels were extremely high in 75 and 89% of the orchards, respectively. In the Bohai Gulf region, 94% of the orchards showed significantly higher values than the standard. The soil pH values of the orchards in eastern China like eastern Shandong or Liaoning were lower than 7.0, while the pH values in the Loess Plateau of northwestern China like Shaanxi were much higher than 7. Soil alkali-hydrolyzable N levels in 47% of the orchards were lower than the optimal level of 70 mg kg–1. Generally, the soil alkali-hydrolyzable N levels of orchards in the Bohai Gulf region were significantly higher than those in the Loess Plateau region. The available P levels in the orchards of the Bohai Gulf region were up to three times higher than those of the Loess Plateau region. However, although the available potassium (K) in most orchards was sufficient (51.39–309.94 mg kg–1), leaf K content in 73% of the orchards was low, possibly due to fruit bagging or fruit overload. Approximately 63% of the orchards in Shandong and 29% of the orchards in Shannxi showed leaf Fe deficiencies. In the Loess Plateau, most orchards showed high leaf Ca levels, a strong correlation was observed between leaf and soil phosphorus/potassium (P/K) content and fruit organic acid content. The amounts of fruit soluble sugar or fructose were positively correlated with soil calcium/potassium (Ca/K) levels and leaf calcium/boron (Ca/B) levels in most orchards. The excessive leaf N levels caused by the extensive application of N fertilizers had a negative effect on fruit quality in most apple orchards in China. P, K, Ca, and B were key minerals associated with fruit quality.
Reference | Related Articles | Metrics
Compatibility of Beauveria bassiana with Neoseiulus barkeri for Control of Frankliniella occidentalis
WU Sheng-yong, GAO Yu-lin, XU Xue-nong, Mark S Goettel, LEI Zhong-ren
2015, 14 (1): 98-105.   DOI: 10.1016/S2095-3119(13)60731-5
Abstract2217)      PDF in ScienceDirect      
The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin and predatory mite Neoseiulus barkeri Hughes are effective biological control agents of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), one of the most important pests of ornamentals and vegetables world-wide. Combined application of both may enhance control efficiency. The functional response for N. barkeri on the first instar larvae of western flower thrips which were infected by B. bassiana for 12 and 24 h in the laboratory ((25±1)°C, (70±5)% RH, L:D=16 h:8 h) was determined. The virulence of B. bassiana against the second instar and pupae of the thrips attacked by N. barkeri were also tested. The results showed that N. barkeri exhibited a Holling type II functional response on treated thrips. After having been treated with the fungus for 12 h and then offered to the predator, thrips were more vulnerable to be killed by N. barkeri. The second instar larvae and pupae of the thrips which had been attacked by predatory mites were markedly more susceptible to B. bassiana infection than normal thrips; the cumulative corrected mortality of B. bassiana of the second instar and pupae which were attacked by N. barkeri were 57 and 94%, respectively, compared to 35 and 80% in controls on the day 8. These findings highlight the potential use of B. bassiana in combination with N. barkeri to control F. occidentalis.
Reference | Related Articles | Metrics
Effects of NaCl and Iso-Osmotic Polyethylene Glycol Stress on Na+/H+ Antiport Activity of Three Malus species with Different Salt Tolerance
YANG Hong-bing, DONG Chun-hai, XU Xue-feng, WANG Yi , HAN Zhen-hai
2014, 13 (6): 1276-1283.   DOI: 10.1016/S2095-3119(13)60627-9
Abstract2256)      PDF in ScienceDirect      
Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na+/H+ antiport in Malus seedlings between osmotic and ionic stress. Species of salt tolerant Malus zumi, middle salt tolerant Malus xiaojinensis and salt sensitive Malus baccata were used as experimental materials. Malus seedlings were treated with NaCl and iso-osmotic PEG stress. The activity of H+-ATPase, proton pump and Na+/H+ antiport of plasmolemma and tonoplast in Malus seedlings were obviously increased under salt stress, and those in salt-tolerant species increased more. Under the same NaCl concentration, the activity of H+- ATPase, proton pump and Na+/H+ antiport of plasmolemma and tonoplast in salt-tolerant species were all obviously higher than those in salt-sensitive one. Higher Na+/H+ antiport activity of plasmolemma and tonoplast in salt-tolerant species could help to extrude and compartmentalize sodium in roots under salt stress. The ascent rate of activity of H+-ATPase, proton pump and Na+/ H+ antiport in Malus seedlings under the three salt concentration stress was all obviously higher than that under the iso-osmotic PEG stress. It indicated that the sodium ion effect had more stimulation on the activity of H+-ATPase, proton pump and Na+/H+ antiport in salt-tolerant species, and salt-tolerant species has higher capability of sodium extrusion and compartmentalization in roots and is therefore more salt tolerant.
Reference | Related Articles | Metrics
The Influence of Transgenic cry1Ab/cry1Ac, cry1C and cry2A Rice on Non- Target Planthoppers and Their Main Predators Under Field Conditions 
HAN Yu, XU Xue-liang, MA Wei-hua, YUAN Ben-qi, WANG Hui, LIU Fang-zhou, WANG Man-qun, WU
2011, 10 (11): 1739-1747.   DOI: 10.1016/S1671-2927(11)60172-7
Abstract2498)      PDF in ScienceDirect      
Transgenic Bt rice has been shown to be an effective means of controlling Lepidoptera pests of rice. However, the potential roles of transgenic rice on planthoppers and their predators need to be investigated before its commercialization. Population density, species dominance and population dynamics are important parameters of arthropods populations in field. So the impacts of three transgenic Bt rice strains expressing cry1Ab/cry1Ac, cry1C and cry2A on population density, species dominance and population dynamics of three species of planthoppers (Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus) and their three main predators (Cyrtorhinus lividipennis, Pirata subpiraticus and Theridium octomaculatum) were evaluated at three sites in Hubei Province, China, in the current study. The results showed that among three species of planthoppers, both in transgenic and non-transgenic rice field, the predominant species of planthoppers within phytophagous guild was S. furcifera at any site either growing season (46-50%). Significantly higher population density of N. lugens was observed in T2A-1 field relative to Minghui 63 field at Wuxue in 2010. The species dominance of predator, P. subpiraticus, in TT51 field was significantly higher than that in T1C-19 and T2A-1 fields in 2009 at Xiaogan site. Sampling date significantly influenced six arthropods except for P. subpiraticus in 2010. The interaction between rice strain×sampling date had no significant adverse effects on the population dynamics of three species of planthoppers and their predators, except for several individual species in 2009. The interaction among rice strain×sampling date×sampling site also had no significant effect on six arthropods except for S. furcifera in 2009. The results indicated that transgenic Bt rice expressing cry1Ab/cry1Ac, cry2A and cry1C had no significant adverse effects on the population dynamics of three planthoppers and their predators in most investigated data and sampling site.
Reference | Related Articles | Metrics