Model fitting of the seasonal population dynamics of the soybean aphid, Aphis glycines Matsumura, in the field
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the greatest threats to soybean production, and both trend analysis and periodic analysis of its population dynamics are important for integrated pest management (IPM). Based on systematically investigating soybean aphid populations in the field from 2018 to 2020, this study adopted the inverse logistic model for the first time, and combined it with the classical logistic model to describe the changes in seasonal population abundance from colonization to extinction in the field. Then, the increasing and decreasing phases of the population fluctuation were divided by calculating the inflection points of the models, which exhibited distinct seasonal trends of the soybean aphid populations in each year. In addition, multifactor logistic models were then established for the first time, in which the abundance of soybean aphids in the field changed with time and relevant environmental conditions. This model enabled the prediction of instantaneous aphid abundance at a given time based on relevant meteorological data. Taken as a whole, the successful approaches implemented in this study could be used to build a theoretical framework for practical IPM strategies for controlling soybean aphids.
Nitrogen (N) and seeding rates are important factors affecting grain yield and N use efficiency (NUE) in direct-seeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice (DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates. The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1 with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1 in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity (INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.