Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host
YANG Si-hua, ZHAO Li-rong, DING Sha, TANG Shi-qiao, CHEN Chun, ZHANG Huan-xin, XU Chun-ling, XIE Hui
2022, 21 (9): 2652-2664.   DOI: 10.1016/j.jia.2022.07.021
Abstract152)      PDF in ScienceDirect      

Radopholus similis (Cobb 1893) Thorne (1949) is a destructive migratory endoparasitic plant nematode.  In this study, the pathogenic process of Rsimilis infection in Nicotiana benthamiana (tobacco) was studied using quartz sand culture in laboratory.  The results showed that Rsimilis mainly parasitised the root cortex, leading to cortical cell decomposition and tissue decay.  We optimised the inoculation conditions to establish a method for determining the pathogenicity of Rsimilis as follows: (1) a glass culture tube was filled with quartz sand (about 1/3 of the height) and sterilised twice; (2) 20-day-old Nbenthamiana seedlings were transplanted into test tubes and cultivated for 10 days at (25±1)°C; (3) Rsimilis female nematodes were inoculated in the root rhizosphere at a rate of 150 nematodes per plant; (4) the number of nematodes, disease severity, and growth of the plant at 30 days post-inoculation (dpi) were determined.  The pathogenicity of eight Rsimilis populations from different hosts was determined, which proved the feasibility of this method.

Reference | Related Articles | Metrics
Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens
WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun
2022, 21 (5): 1457-1474.   DOI: 10.1016/S2095-3119(21)63842-X
Abstract320)      PDF in ScienceDirect      
Indigenous chicken products are increasingly favored by consumers due to their unique meat and egg quality.  However, the relatively poor egg-laying performance largely impacts the economic benefits and hinders sustainable development of the local chicken industry.  Thus, excavating key genes and effective molecular markers associated with egg-laying performance is necessary to improve egg production via genetic selection in indigenous breeds.  In the present study, comparative hypothalamic transcriptome between pre-laying (15 weeks old) and peak-laying (30 weeks old) Lushi blue-shelled-egg (LBS) chicken was performed.  A total of 518 differentially expressed genes (DEGs) were identified.  Among the DEGs, 64 genes were enriched in 10 Gene Ontology (GO) terms associated with reproductive regulation via GO analysis and considered as potential candidate genes regulating egg-laying performance.  Of the 64 genes, 16 showed high connectivity (degree≥12) by protein–protein interaction (PPI) network analysis and were considered as potential core candidate genes (PCCGs).  To further look for key candidate genes from the PCCGs, firstly, the expression patterns of the 16 genes were examined in the hypothalamus of two indigenous breeds (LBS and Gushi (GS) chickens) between the pre-laying and peak-laying stages using quantitative real-time PCR (qRT-PCR).  Eleven out of the 16 genes showed significantly differential expression (P<0.05) with the same changing trends in the two breeds.  Then, correlations between the expression levels of the above 11 genes and egg numbers and reproductive hormone concentrations in serum were investigated in high-yielding and low-yielding GS chickens.  Of the 11 genes, eight showed significant correlations (P<0.05) between their expression levels and egg numbers, and between expression levels and reproductive hormone concentration in serum.  Furthermore, an association study on single nucleotide polymorphisms (SNPs) identified in these eight genes and egg production traits was carried out in 640 GS hens, and a significant association (P<0.05) between the SNPs and egg numbers was confirmed.  In conclusion, the eight genes, including CNR1, AP2M1, NRXN1, ANXA5, PENK, SLC1A2, SNAP25 and TRH, were demonstrated as key genes regulating egg production in indigenous chickens, and the SNPs sites within the genes might be served as markers to provide a guide for indigenous chicken breeding.  These findings provide a novel insight for further understanding the regulatory mechanisms of egg-laying performance and developing molecular markers to improve egg production of indigenous breeds.
Reference | Related Articles | Metrics
Parasitism and pathogenicity of Radopholus similis to Ipomoea aquatica, Basella rubra and Cucurbita moschata and genetic diversity of different populations
LI Yu, WANG Ke, XIE Hui, XU Chun-ling, WANG Dong-wei, LI Jing, HUANG Xin, PENG Xiao-fang
2016, 15 (1): 120-134.   DOI: 10.1016/S2095-3119(14)61003-0
Abstract2006)      PDF in ScienceDirect      
Ten populations of Radopholus similis from different ornamental hosts were tested for their parasitism and pathogenicity to water spinach (Ipomoea aquatic), malabar spinach (Basella rubra), and squash (Cucurbita moschata) in pots. The results showed all three plants were new hosts of R. similis. Growth parameters of plants inoculated with nematodes were significantly lower than those of healthy control plants. All R. similis populations were pathogenic to the three plants, but pathogenicity differed among populations from different hosts. The same R. similis populations also showed different pathogenic effects in the three different plants. RadN5 population from Anthurium andraeanum had the highest pathogenicity to the three studied plants. RadN1 from A. andraeanum had the lowest pathogenicity to squash and RadN7 from Chrysalidocarpus lutesens had the lowest pathogenicity to water spinach and malabar spinach. R. similis is usually associated with root tissues, but here we report that it could be found to move and feed in the stem bases of all three studied plants. Sequence and phylogenetic analyses of DNA markers of the 18S rRNA, 28S rRNA, ITS rRNA, and mitochondrial DNA gene sequences of ten R. similis populations revealed significant genetic diversity. RadN5 and RadN6 populations from anthurium showed a close genetic relationship and could be distinguished from other populations by PCR-RFLP. At the same time, RadN5 and RadN6 populations were the most pathogenic to three studied plants. These results confirm the existence of large biological variability and molecular diversity among R. similis populations from the same or different hosts, and these characteristics are related to pathogenic variability.
Reference | Related Articles | Metrics