Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)
Qian Wang, Huimin Cao, Jingcheng Wang, Zirong Gu, Qiuyun Lin, Zeyan Zhang, Xueying Zhao, Wei Gao, Huijun Zhu, Hubin Yan, Jianjun Yan, Qingting Hao, Yaowen Zhang
2024, 23 (8): 2571-2588.   DOI: 10.1016/j.jia.2024.04.022
Abstract104)      PDF in ScienceDirect      
Pre-harvest sprouting (PHS) poses a significant global challenge to cereal production, impacting both yield and quality.  Seed coat color affects the appearance and commodity quality of mung beans (Vigna radiata L.).  The substances that affect mung bean seed coat color are mainly flavonoids, which have important medicinal value.  Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.  In this study, an F2 mapping population consisting of 546 plants was constructed using Jilv9 (black seed coat) and BIS9805 (green seed coat).  Using bulk segregated analysis (BSA) sequencing and kompetitive allele-specific PCR (KASP) markers, the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome (Chr.) 4 and included eight candidate genes.  Combined transcriptome and metabolome analyses showed that three of the eight candidate genes (LOC106758748, LOC106758747, and LOC106759075) were differentially expressed, which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.  These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular marker-assisted selection breeding in mung beans.


Reference | Related Articles | Metrics
Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination
Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang
2024, 23 (7): 2164-2177.   DOI: 10.1016/j.jia.2023.07.023
Abstract170)      PDF in ScienceDirect      
The P-type plasma membrane (PM) H+-ATPases (HAs) are crucial for plant development, growth, and defense.  The HAs have been thoroughly characterized in many different plants.  However, despite their importance, the functions of HAs in germination and seed dormancy (SD) have not been validated in wheat.  Here, we identified 28 TaHA genes (TaHA1-28) in common wheat, which were divided into five subfamilies.  An examination of gene expression in strong- and weak-SD wheat varieties led to the discovery of six candidate genes (TaHA7/-12/-14/-16/-18/-20).  Based on a single nucleotide polymorphism (SNP) mutation (C/T) in the TaHA7 coding region, a CAPS marker (HA7) was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.  We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate (EMS) in ‘Jimai 22’ and ‘Jing 411’ backgrounds, and in transgenic Arabidopsis lines.  TaHA7 appears to regulate germination and SD by mediating gibberellic acid (GA) and abscisic acid (ABA) signaling, metabolism, and biosynthesis.  The results presented here will enable future research regarding the TaHAs in wheat.


Reference | Related Articles | Metrics
Knock-out of GhPDCT with the CRISPR/Cas9 system increases the oleic acid content in cottonseed oil
Tingwan Li, Lu Long, Yingchao Tang, Zhongping Xu, Guanying Wang, Man Jiang, Shuangxia Jin, Wei Gao
2024, 23 (10): 3468-3471.   DOI: 10.1016/j.jia.2024.07.030
Abstract189)      PDF in ScienceDirect      

Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil (Long et al. 2023). Cottonseed oil contains approximately 14% oleic acid and 59% linoleic acid. An increase in monounsaturated fatty acids, particularly oleic acid, enhances the oxidative stability and nutritional value of edible oil (Chen et al. 2021). Currently, the demand for edible oil in China is increasing in terms of both production and nutrition. Improving cottonseed oil’s storability and nutritional value is crucial for the comprehensive utilization of cotton. However, cottonseed has long been regarded as a by-product in the cotton industry, so research on improving the content and quality of cottonseed oil has lagged compared to other crop attributes.

Phosphatidylcholine: diacylglycerol cholinephospho-transferase (PDCT) is the gate-keeping enzyme for the conversion between phosphatidylcholine and diacylglycerol (Lu et al. 2009). Studies in multiple plants have revealed increases in monounsaturated fatty acids in seeds with PDCT knock-out. To clone the PDCTs of upland cotton (Gossypium hirsutum), the protein sequences of PDCT from Arabidopsis (Lu et al. 2009), oilseed rape (Brassica napus; Bai et al. 2020), soybean (Glycine max; Li et al. 2023), peanut (Arachis hypogaea), and sesame (Sesamum indicum) were used as references for BLAST searches in CottonMD (https://yanglab.hzau.edu.cn/CottonMD; Yang et al. 2023). Four PDCT homologs in cotton were obtained and named GhPDCT1 (Gh_D06G1990), GhPDCT2 (Gh_A06G1621), GhPDCT3 (Gh_A05G3864), and GhPDCT4 (Gh_D05G1178) (Fig. 1-A). The sequence similarities between the four GhPDCTs and AtPDCT are 58.47, 60.13, 45.18, and 58.61%, respectively. Further, the phylogenetic analysis revealed that the GhPDCTs are clustered with the PDCTs of Brassica napus (Fig. 1-A).

The heatmap of GhPDCTs in cotton tissues was built using released transcriptome data. The results showed that GhPDCT3 and GhPDCT4 had very little expression in all tissues (Fig. 1-B). GhPDCT2 was expressed in roots, stems, leaves and ovules at different developmental stages, but at relatively low levels. GhPDCT1 shared similar basal expression with GhPDCT2, but the transcript level of GhPDCT1 in ovules was significantly higher than that of GhPDCT2. Notably, the expression of GhPDCT1 was sharply up-regulated in ovules at 20 and 25 days post anthesis (DPA). The expression pattern of GhPDCT1 was further verified by RT-qPCR, which indicated that GhPDCT1 was up-regulated in the late stage of ovule development and peaked around 25 DPA. Previous reports highlighted the rapid accumulation of oil content in cotton seeds at 20–30 DPA (Zhao et al. 2018). Therefore, GhPDCT1 is considered the key candidate for regulating the seed oil content of cotton (Fig. 1-B).

Sequence analysis showed that GhPDCT1/2 and GmPDCT1/2 contain similar conserved motifs, as well as a C-terminal PAP2_3 domain (Fig. 1-C). The GmPDCT1 and GmPDCT2 in soybean were both found to be located in the cytosol (Li et al. 2023). To study the subcellular localization of GhPDCT, a GFP-PDCT1 fusion protein was expressed in the protoplasts of cotton cotyledons (Hu et al. 2022), and the RFP-labeled transcription factor GoPGF (Zhang et al. 2024) was co-expressed to mark the nucleus. Observations with a laser scanning confocal microscope showed the green fluorescence of GFP-PDCT1 expressed in the cytoplasm (Fig. 1-D).

Knock-out of GhPDCT was achieved with the optimized CRISPR/Cas9 system of cotton (Wang et al. 2018). Due to the high similarity (94.2%) of the coding sequences of GhPDCT1 and GhPDCT2, two sgRNAs respectively targeting two different sites of the 1st exon were designed for the simultaneous mutagenesis of GhPDCT1 and GhPDCT2 (Fig. 1-E). The Ghirsutum L. line ‘Jin668’ was used to produce the GhPDCT1/2 mutant of cotton (ghpdct) with Agrobacterium-mediated transformation (Zhu et al. 2023). The DNA of the ghpdct mutant was extracted for Hi-TOM sequencing, and the offspring of ghpdct-5 with the full mutation were planted for further studies. As shown in Fig. 1-F, ghpdct-5 has a 1 nt deletion at target 2 of GhPDCT2 (A subgenome). In addition, two types of mutations were found in GhPDCT1 (D subgenome), one with a 1 nt insertion at target 1, and the other with a 1 nt insertion and a 2 nt deletion at target 1. The wild type (WT) and ghpdct were planted in the field and a phenotypic study was conducted during the whole growing period. No obvious differences in plant growth were observed between WT and ghpdct. For example, the plant height, fiber length, seed weight of WT and ghpdct showed no statistically significant differences (Fig. 1-G–I).

The fatty acids in seeds of WT and ghpdct were measured by gas chromatography-mass spectrometry (GC-MS) (Fig. 1-J). Oleic acid (OA, C18:1) accounted for an average of 14.46% of the total fatty acids in seeds of WT, and 16.49% in seeds of ghpdct, which indicates the up-regulation of oleic acid in the ghpdct mutant. Conversely, linoleic acid (LA, C18:2) was reduced in seeds of ghpdct (52.83%) compared to seeds of WT (59.98%). In addition, knockout of GhPDCT increased the seed content of palmitic acid (PA, C16:0) from 21.24% in WT to 25.85% in ghpdct, and the content of stearic acid (SA, C18:0) increased from 1.70% in WT seeds to 2.39% in ghpdct seeds. These results indicated that the GhPDCT mutation alters the balance of monounsaturated and polyunsaturated fatty acids in cotton seeds, with minimal impacts on growth and development beyond seed oil metabolism.

In conclusion, we have produced the ghpdct mutant of cotton using the CRISPR/Cas9 system. Knock-out of GhPDCT1/2 affects the conversion between phosphatidylcholine and diacylglycerol in cottonseeds, and changes the contents of oleic acid, linoleic acid, palmitic acid, and stearic acid. We obtained a new germplasm with a higher oleic acid content in cottonseed oil, which can be applied to enhance the economic and nutritional value of cotton as an oil crop, thereby contributing to the industrial upgrading of cotton.

Reference | Related Articles | Metrics
GhWRKY75 positively regulates GhPR6-5b via binding to a W-box TTGAC (C/T) to orchestrate cotton resistance to Verticillium dahliae 
Qichao Chai, Meina Zheng, Yanli Li, Mingwei Gao, Yongcui Wang, Xiuli Wang, Chao Zhang, Hui Jiang, Ying Chen, Jiabao Wang, Junsheng Zhao
2024, 23 (10): 3343-3357.   DOI: 10.1016/j.jia.2024.05.017
Abstract94)      PDF in ScienceDirect      
Verticillium dahliae is an important fungal pathogen affecting cotton yield and quality.  Therefore, the mining of Vdahlia-resistance genes is urgently needed.  Proteases and protease inhibitors play crucial roles in plant defense responses.  However, the functions and regulatory mechanisms of the protease inhibitor PR6 gene family remain largely unknown.  This study provides a comprehensive analysis of the PR6 gene family in the cotton genome. We performed genome-wide identification and functional characterization of the cotton GhPR6 gene family, which belongs to the potato protease inhibitor I family of inhibitors.  Thirty-nine PR6s were identified in Gossypium arboreum, Graimondii, Gbarbadense, and Ghirsutum, and they were clustered into four groups.  Based on the analysis of pathogen-induced and Ghlmm transcriptome data, GhPR6-5b was identified as the key gene for Vdahliae resistance. Virus-induced gene silencing experiments revealed that cotton was more sensitive to Vdahliae V991 after PR6-5b silencing.  The present study established that GhWRKY75 plays an important role in resistance to Verticillium wilt in cotton by positively regulating GhPR6-5b expression by directly binding to the W-box TTGAC(T/C).  Our findings established that GhWRKY75 is a potential candidate for improving cotton resistance to Vdahliae, and provide primary information for further investigations and the development of specific strategies to bolster the defense mechanisms of cotton against Vdahliae.


Reference | Related Articles | Metrics

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts

Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu
2024, 23 (1): 239-250.   DOI: 10.1016/j.jia.2023.07.011
Abstract142)      PDF in ScienceDirect      

Evidence showed that N6-methyladenosine (m6A) modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.  However, no information regarding m6A modification in Eimeria tenella is currently available.  In the present study, we surveyed the transcriptome-wide prevalence of m6A in sporulated oocysts and unsporulated oocysts of Etenella.  Methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis showed that m6A modification was most abundant in the coding sequences, followed by stop codon.  There were 3,903 hypermethylated and 3,178 hypomethylated mRNAs in sporulated oocysts compared with unsporulated oocysts.  Further joint analysis suggested that m6A modification of the majority of genes was positively correlated with mRNA expression.  The mRNA relative expression and m6A level of the selected genes were confirmed by quantitative reverse transcription PCR (RT-qPCR) and MeRIP-qPCR.  GO and KEGG analysis indicated that differentially m6A methylated genes (DMMGs) with significant differences in mRNA expression were closely related to processes such as regulation of gene expression, epigenetic, microtubule, autophagy-other and TOR signaling.  Moreover, a total of 96 DMMGs without significant differences in mRNA expression showed significant differences at protein level.  GO and pathway enrichment analysis of the 96 genes showed that RNA methylation may be involved in cell biosynthesis and metabolism of Etenella.  We firstly present a map of RNA m6A modification in Etenella, which provides significant insights into developmental biology of E. tenella.

Reference | Related Articles | Metrics