导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((Waqas AHMED[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil
Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min
2022, 21 (
7
): 2134-2144. DOI:
10.1016/S2095-3119(21)63733-4
Abstract
(
132
)
PDF in ScienceDirect
Understanding the impact of biological activities on the soil phosphorus (P) distribution under long-term fertilizer application can facilitate better soil P fertility management. Therefore, the primary objectives of this study were to investigate the effect of long-term (since 1981) fertilizer application on the soil P fractions and microbial community and to evaluate correlations between the microbial community structure and P distribution. The following treatments were implemented in a long-term field trial: no fertilization (CK), inorganic N and K (NK), inorganic P and K (PK), inorganic N, P and K (NPK) and manure+NPK (MNPK) fertilization. The study showed that the soil pH, soil organic carbon and total and available N and P concentrations were considerably higher in the MNPK treatment than in the CK treatment. The soil microbial biomass C, N and P concentrations were also significantly higher in the MNPK treatment than in the CK treatment. Among fertilization treatments, the β-1,4-glucosidase, α-1,4-glucosidase, urease, acid phosphatase and phosphodiesterase activities were the highest in the MNPK treatment. Compared to inorganic fertilization, the MNPK treatment increased the labile soil P fractions and decreased the residual soil P concentration. Continuous fertilization significantly affected the soil microbial composition. The total phospholipid fatty acid (PLFA) concentrations in the NK, PK, NPK and MNPK treatments were 23.3, 43.1, 48.7 and 87.7% higher, respectively, than in the CK treatment. A significant correlation was observed between the microbial community and soil P fractions. Moreover, the aggregated boosted tree (ABT) model showed that among the various soil biochemical properties, the total PLFA concentration was the factor that most influenced the active P pool, accounting for 35.4% of the relative influence of all soil biochemical properties examined. These findings reveal that combined manure and inorganic fertilizer application is a better approach than applying inorganic fertilizer alone for sustaining long-term P fertility by mediating soil biological activity.
Reference
|
Related Articles
|
Metrics
Select
Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system
Muhammad QASWAR, LI Dong-chu, HUANG Jing, HAN Tian-fu, Waqas AHMED, Sehrish ALI, Muhammad Numan KHAN, Zulqarnain Haider KHAN, XU Yong-mei, LI Qian, ZHANG Hui-min, WANG Bo-ren, Ahmad TAUQEER
2022, 21 (
3
): 826-839. DOI:
10.1016/S2095-3119(20)63501-8
Abstract
(
127
)
PDF in ScienceDirect
Soil organic carbon (SOC) and nitrogen (N) are two of the most important indicators for agricultural productivity. The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile (up to 100 cm) and their relationships with crop productivity under the influence of long-term (since 1990) fertilization in the wheat-maize cropping system. Treatments included CK (control), NP (inorganic N and phosphorus (P) fertilizers), NPK (inorganic N, P and potassium fertilizers), NPKM (NPK plus manure), and M (manure). Crop yield and the properties of topsoil were measured yearly from 2001 to 2009. C and N contents were measured at five different depths in 2001 and 2009. The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer (NP and NPK) treatments. The average yield between 2001 and 2009 under the NP, NPK, NPKM, and M treatments (compared with the CK treatment) increased by 38, 115, 383, and 381%, respectively, for wheat and 348, 891, 2 738, and 1 845%, respectively, for maize. Different long-term fertilization treatments significantly changed coarse free particulate (cfPOC), fine free particulate (ffPOC), intramicroaggregate particulate (iPOC), and mineral-associated (mSOC) organic carbon fractions. In the experimental years of 2001 and 2009, soil fractions occurred in the following order for all treatments: mSOC>cfPOC>iPOC>ffPOC. All fractions were higher under the manure application treatments than under the inorganic fertilization treatments. Compared to the inorganic fertilization treatments, manure input enhanced the stocks of SOC and total N in the surface layer (0–20 cm) but decreased SOC and N in the deep soil layer (80–100 cm). This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients, especially N, compared to inorganic fertilization treatments. The findings provide opportunities for understanding deep soil C and N dynamics, which could help mitigate climate change impact on agricultural production and maintain soil health.
Reference
|
Related Articles
|
Metrics
Select
Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar
Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S.M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood
DOI:
10.1016/j.jia.2023.12.022
Online: 03 January 2024
Abstract
(
41
)
PDF in ScienceDirect
The current investigation aimed at evaluating the impact of as-is biochar (BC) and phosphorous (P)-loaded biochar (PBC) (3%) on the growth and biochemical characteristics of rice under exposure to vanadium (V) (60 mg L
-1
). The results indicate that rice plants exposed to V-only treatment experienced a decline in growth parameters. Conversely, the inclusion of BC and PBC caused a noteworthy increase in physiological traits. PBC performed well in stress environments, specifically, shoot and root fresh weight increased by 82.86 and 53.33%, respectively, when compared to V-only treatment. Additionally, the SPAD chlorophyll of the shoot increased by 13.05% than V-amended plants. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD by 56.11&117.35%), catalase (CAT by 34.19&35.77%), and peroxidase (POD 25.90&18.74%), exhibited significant increases when compared to V-only amended plants, respectively. These findings strongly suggest that the application of BC and PBC can trigger biochemical pathways that facilitate biomass accumulation in meristematic cells. However, further investigations are required to elucidate the underlying mechanisms responsible for this growth promotion.
Reference
|
Related Articles
|
Metrics