Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis
XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun
2023, 22 (5): 1412-1423.   DOI: 10.1016/j.jia.2023.03.005
Abstract349)      PDF in ScienceDirect      

Passion fruit (Passiflora edulis Sims) is a vine of the Passiflora genus in the Passifloraceae family.  The extracted components include flavonoids and terpenoids, which have good anti-anxiety and anti-inflammatory effects in humans.  In this study, we analyzed the transcriptomes of four tissues of the ‘Zixiang’ cultivar using RNA-Seq, which provided a dataset for functional gene mining.  The de novo assembly of these reads generated 96 883 unigenes, among which 61 022 unigenes were annotated (62.99% yield).  In addition to its edible value, another important application of passion fruit is its medicinal value.  The flavonoids and terpenoids are mainly derivatives of luteolin, apigenin, cycloartane triterpenoid saponins and other active substances in leaf extracts.  A series of candidate unigenes in the transcriptome data that are potentially involved in the flavonoid and terpenoid synthesis pathways were screened using homology-based BLAST and phylogenetic analysis.  The results showed that the biosynthesis of triterpenoids in passion fruit comes from the branches of the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathways, which is different from the MVA pathway that is used in other fruit trees.  Most of the candidate genes were found to be highly expressed in the leaves and/or flowers.  Quantitative real-time PCR (qRT-PCR) verification was carried out and confirmed the reliability of the RNA-Seq data.  Further amplification and functional analysis of these putative unigenes will provide additional insight into the biosynthesis of flavonoids and terpenoids in passion fruit.

Reference | Related Articles | Metrics
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan
2020, 19 (7): 1704-1720.   DOI: 10.1016/S2095-3119(19)62761-9
Abstract194)      PDF in ScienceDirect      
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Reference | Related Articles | Metrics
Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species
TIAN Jia, ZENG Bin, LUO Shu-ping, LI Xiu-gen, WU Bin, LI Jiang
2016, 15 (2): 282-294.   DOI: 10.1016/S2095-3119(15)61075-9
Abstract2514)      PDF in ScienceDirect      
Fruit size is one of the most important agronomic characters, which is mainly determined by cell number and cell size. However, our current knowledge about pear is largely unknown. Through counting of pear mesocarp cells at different stages, we found that the cell number, rather than the cell size, is responsible for the differences between small- and large-fruited cultivars. Fruit weight-2.2 (fw2.2) is an important quantitative trait locus (QTL) affecting fruit weight in tomato and functions as a negative regulator in carpel cell division. To get more insights into this QTL in pear fruit development, we isolated two putative homologous fw2.2 genes, which were designated as fw2.2-like (PbFWL) genes. PbFWLs encode Cys-rich proteins with the CCXXXXCPC motif and belong to the PLAC8 superfamily. In addition, results from the subcellular localization indicated that PbFWLs were localized in the plasma membrane. The expression profile of the PbFWL genes by qRT-PCR showed they expressed higher in small-sized fruit cultivar than that in large-sized fruit cultivar during the cell division period. In summary, our data suggest that these two PbFWLs might be negatively related to the cell division in pear fruit.
Reference | Related Articles | Metrics
Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean
CHEN Hua-tao, CHEN Xin, WU Bing-yue, YUAN Xing-xing, ZHANG Hong-mei, CUI Xiao-yan
2015, 14 (6): 1171-1183.   DOI: 10.1016/S2095-3119(14)60918-7
Abstract2848)      PDF in ScienceDirect      
Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K+/Na+ ratio is the key determinant of tolerance under salt stress. The aims of the present study were to identify and analyse expression patterns of the soybean K+ efflux antiporter (KEA) gene and Na+/H+ antiporter (NHX) gene family, and to explore their roles under abiotic stress. As a result, 12 soybean GmKEAs genes and 10 soybean GmNHXs genes were identified and analyzed from soybean genome. Interestingly, the novel soybean KEA gene Glyma16g32821 which encodes 11 transmembrane domains were extremely up-regulated and remained high level until 48 h in root after the excessive potassium treatment and lack of potassium treatment, respectively. The novel soybean NHX gene Glyma09g02130 which encodes 10 transmembrane domains were extremely up-regulated and remained high level until 48 h in root with NaCl stress. Imaging of subcellular locations of the two new Glyma16g32821-GFP and Glyma09g02130-GFP fusion proteins indicated all plasma membrane localizations of the two novel soybean genes. The 3D structures indicated that the two soybean novel proteins Glyma09g02130 (NHX) and Glyma16g32821 (KEA) all belong to the cation/hydrogen antiporter family.
Reference | Related Articles | Metrics
GmPHR1, a Novel Homolog of the AtPHR1 Transcription Factor, Plays a Role in Plant Tolerance to Phosphate Starvation
LI Xi-huan, WANG Yun-jie, WU Bing, KONG You-bin, LI Wen-long, CHANG Wen-suo , ZHANG Cai-ying
2014, 13 (12): 2584-2593.   DOI: 10.1016/S2095-3119(14)60775-9
Abstract1900)      PDF in ScienceDirect      
GmPHR1 from soybean (Glycine max) was isolated and characterized. This novel homolog of the AtPHR1 transcription factor confers tolerance to inorganic phosphate (Pi)-starvation. The gene is 2751 bp long, with an 819-bp open reading frame and five introns. Analysis of transcription activity in yeast revealed that the full-length GmPHR1 and its C-terminal activate the reporter genes for His, Ade and Ura, suggesting that the C-terminal peptide functions as a transcriptional activator. Quantitative real-time PCR indicated that patterns of GmPHR1 expression differed. For example, under low-Pi stress, this gene was quickly induced in the tolerant JD11 after 0.5 h, with expression then decreasing slowly before peaking at 12-24 h. By contrast, induction in the sensitive Niumaohuang (NMH) was slow, peaking at 6 h before decreasing quickly at 9 h. GmPHR1 showed sub-cellular localization in the nuclei of onion epidermal cells and Arabidopsis roots. Growth parameters in wild-type (WT) Arabidopsis plants as well as in overexpression (OE) transgenic lines were examined. Under low-Pi conditions, values for shoot, root and whole-plant dry weights, root to shoot ratios, and lengths of primary roots were significantly greater in OE lines than in the WT. These data demonstrate that GmPHR1 has an important role in conferring tolerance to phosphate starvation.
Reference | Related Articles | Metrics