Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014
GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su
2023, 22 (3): 691-700.   DOI: 10.1016/j.jia.2022.08.006
Abstract221)      PDF in ScienceDirect      
Grain filling is the physiological process for determining the obtainment of yield in cereal crops.  The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.  We found that the grain-filling duration (54.46%) and rate (43.40%) at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight (HKW).  Meanwhile, along with the significant increase in HKW, the accumulated growing degree days (GDDs) for the actual grain-filling period duration (AFPD) among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41°C d.  However, there was a decadal increase of only 19.76°C d for GDDs of the days from sowing to physiological maturity (DPM), which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking (DS) and DPM (i.e., from 53.24% in the 1960s to 49.78% in the 2010s).  In contrast, there were no significant changes in grain-filling rate along with the release years of the selected hybrids.  Moreover, the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.  We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.  According to the results of this study, it is expected that the relatively longer grain-filling duration, shorter DS, higher grain-filling rate, and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.  
Reference | Related Articles | Metrics
Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize
SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui
2023, 22 (11): 3394-3407.   DOI: 10.1016/j.jia.2023.04.022
Abstract239)      PDF in ScienceDirect      
The crown root system is the most important root component in maize at both the vegetative and reproductive stages.  However, the genetic basis of maize crown root traits (CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood.  In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments.  We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield.  Using a genome-wide association study (GWAS) coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT.  Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture.  Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication- and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement.  Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize.  This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.

Reference | Related Articles | Metrics
Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
HAO Lu-yang, LIU Xu-yang, ZHANG Xiao-jing, SUN Bao-cheng, LIU Cheng, ZHANG Deng-feng, TANG Huai-jun, LI Chun-hui, LI Yong-xiang, SHI Yun-su, XIE Xiao-qing, SONG Yan-chun, WANG Tian-yu, LI Yu
2020, 19 (2): 449-464.   DOI: 10.1016/S2095-3119(19)62660-2
Abstract174)      PDF in ScienceDirect      
Drought is one of the most important abiotic stresses affecting maize growth and development and therefore resulting in yield loss.  Thus it is essential to understand molecular mechanisms of drought stress responses in maize for drought tolerance improvement.  The root plays a critical role in plants sensing water deficit.  In the present study, two maize inbred lines, H082183, a drought-tolerant line, and Lv28, a drought-sensitive line, were grown in the field and treated with different water conditions (moderate drought, severe drought, and well-watered conditions) during vegetative stage.  The transcriptomes of their roots were investigated by RNA sequencing.  There were 1 428 and 512 drought-responsive genes (DRGs) in Lv28, 688 and 3 363 DRGs in H082183 under moderate drought and severe drought, respectively.  A total of 31 Gene Ontology (GO) terms were significantly over-represented in the two lines, 13 of which were enriched only in the DRGs of H082183.  Based on results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, “plant hormone signal transduction” and “starch and sucrose metabolism” were enriched in both of the two lines, while “phenylpropanoid biosynthesis” was only enriched in H082183.  Further analysis revealed the different expression patterns of genes related to abscisic acid (ABA) signal pathway, trehalose biosynthesis, reactive oxygen scavenging, and transcription factors might contribute to drought tolerance in maize.  Our results contribute to illustrating drought-responsive molecular mechanisms and providing gene resources for maize drought improvement.
Reference | Related Articles | Metrics
Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage
ZHANG Deng-feng, ZENG Ting-ru, LIU Xu-yang, GAO Chen-xi, LI Yong-xiang, LI Chun-hui, SONG Yan-chun, SHI Yun-su, WANG Tian-yu, LI Yu
2019, 18 (9): 1980-1995.   DOI: 10.1016/S2095-3119(18)62119-7
Abstract145)      PDF in ScienceDirect      
Drought stress affects the growth and productivity of crop plants including sorghum.  To study the molecular basis of drought tolerance in sorghum, we conducted the transcriptomic profiling of sorghum leaves and roots under drought stress using RNA-Seq method.  A total of 510, 559, and 3 687 differentially expressed genes (DEGs) in leaves, 3 368, 5 093, and 4 635 DEGs in roots responding to mild drought, severe drought, and re-watering treatments were identified, respectively.  Among them, 190 common DEGs in leaves and 1 644 common DEGs in roots were responsive to mild drought, severe drought, and re-watering environment.  Gene Ontology (GO) enrichment analysis revealed that the GO categories related to drought tolerance include terms related to response to stimulus especially response to water deprivation, abscisic acid stimulus, and reactive oxygen species.  The major transcription factor genes responsive to drought stress include heat stress transcription factor (HSF), ethylene-responsive transcription factor (ERF), Petunia NAM, Arabidopsis ATAF1/2 and CUC2 (NAC), WRKY transcription factor (WRKY), homeodomain leucine zipper transcription factor (HD-ZIP), basic helix-loop-helix transcription factor (bHLH),  and V-myb myeloblastosis viral oncogene homolog transcription facotr (MYB).  Functional protein genes for heat shock protein (HSPs), late-embryogenesis-abundant protein (LEAs), chaperones, aquaporins, and expansins might play important roles in sorghum drought tolerance.  Moreover, the genomic regions enriched with HSP, expansin, and aquaporin genes responsive to drought stress could be used as powerful targets for improvement of drought tolerance in sorghum and other cereals.  Overall, our results provide a genome-wide analysis of DEGs in sorghum leaves and roots under mild drought, severe drought, and re-watering environments.  This study contributes to a better understanding of the molecular basis of drought tolerance of sorghum and can be useful for crop improvement.
 
Reference | Related Articles | Metrics
Dynamic changes of root proteome reveal diverse responsive proteins in maize subjected to cadmium stress
REN Wen, LIU Ya, ZHOU Miao-yi, SHI Zi, WANG Tian-yu, ZHAO Jiu-ran, LI Yu
2019, 18 (10): 2193-2204.   DOI: 10.1016/S2095-3119(18)62140-9
Abstract109)      PDF in ScienceDirect      
Toxic symptoms and tolerance mechanisms of heavy metal in maize are well documented.  However, limited information is available regarding the changes in the proteome of maize seedling roots in response to cadmium (Cd) stress.  Here, we employed an iTRAQ-based quantitative proteomic approach to characterize the dynamic alterations in the root proteome during early developmental in maize seedling.  We conducted our proteomic experiments in three-day seedling subjected to Cd stress, using roots in four time points.  We identified a total of 733, 307, 499, and 576 differentially abundant proteins after 12, 24, 48, or 72 h of treatment, respectively.  These proteins displayed different functions, such as ribosomal synthesis, reactive oxygen species homeostasis, cell wall organization, cellular metabolism, and carbohydrate and energy metabolism.  Of the 166 and 177 proteins with higher and lower abundance identified in at least two time points, 14 were common for three time points.  We selected nine proteins to verify their expression using quantitative real-time PCR.  Proteins involved in the ribosome pathway were especially responsive to Cd stress.  Functional characterization of the proteins and the pathways identified in this study could help our understanding of the complicated molecular mechanism involved in Cd stress responses and create a list of candidate gene responsible for Cd tolerance in maize seeding roots.
Reference | Related Articles | Metrics
Simple nonlinear model for the relationship between maize yield and cumulative water amount
LIU Cheng SUN Bao-cheng, TANG Huai-jun, WANG Tian-yu LI Yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Jian-sheng
2017, 16 (04): 858-866.   DOI: 10.1016/S2095-3119(16)61493-4
Abstract794)      PDF in ScienceDirect      
Both the additive and multiplicative models of crop yield and water supply are polynomial equations, and the number of parameters increases linearly when the growing period is specified.  However, interactions among multiple parameters occasionally lead to unreasonable estimations of certain parameters, which were water sensitivity coefficients but with negative value.  Additionally, evapotranspiration must be measured as a model input.  To facilitate the application of these models and overcome the aforementioned shortcomings, a simple model with only three parameters was derived in this paper based on certain general quantitative relations of crop yield (Y) and water supply (W).  The new model, Y/YmWk/(Wk+whk), fits an S or a saturated curve of crop yield with the cumulative amount of water.  Three parameters are related to biological factors: the yield potential (Ym), the water requirement to achieve half of the yield potential (half-yield water requirement, wh), and the water sensitivity coefficient (k).  The model was validated with data from 24 maize lines obtained in the present study and 17 maize hybrids published by other authors.  The results showed that the model was well fit to the data, and the normal root of the mean square error (NRMSE) values were 2.8 to 17.8% (average 7.2%) for the 24 maize lines and 2.7 to 12.7% (average 7.4%) for the 17 maize varieties.  According to the present model, the maize water-sensitive stages in descending order were pollen shedding and silking, tasselling, jointing, initial grain ?lling, germination, middle grain ?lling, late grain ?lling, and end of grain ?lling.  This sequence was consistent with actual observations in the maize field.  The present model may be easily used to analyse the water use efficiency and drought tolerance of maize at specific stages.
Reference | Related Articles | Metrics