Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs
WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei
2022, 21 (3): 819-825.   DOI: 10.1016/S2095-3119(21)63767-X
Abstract219)      PDF in ScienceDirect      
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a devastating disease of domestic and wild pigs.  There is no effective vaccine, and the control of the disease relies mainly on surveillance and early detection of infected pigs.  Previously, serological assays, such as ELISA, have been developed mainly based on recombinant structural viral proteins of ASFV, including p72, p54, and p30.  However, the antibodies against these proteins do not provide efficient protection against ASFV infection in pigs.  Therefore, new serological assays that can be applied for clinical diagnosis and evaluating serological immune response in vaccinated pigs are still required.  In this study, we expressed and purified a recombinant pB602L protein.  The purified pB602L protein was then used as an antigen to develop an indirect ELISA assay.  This assay has no cross-reaction with the anti-sera against the 15 most common pig pathogens in China, such as classical swine fever virus, pseudorabies virus, and porcine parvovirus.  This assay and a commercial ELISA kit were then used to detect 60 field pig serum samples, including an unknown number of anti-ASFV sera.  The coincidence of the two assays was 95%.  Furthermore, the pB602L-based ELISA was employed to test the antibody responses to the seven-gene-deleted ASFV strain HLJ/18-7GD in pigs.  The results showed that the antibody levels in all vaccinated pigs, starting from the 10th day post-inoculation, have increased continuously during the observation period of 45 days.  Our results indicate that this pB602L-based indirect ELISA assay can be employed potentially in the field of ASFV diagnosis.
Reference | Related Articles | Metrics
Alphaherpesvirus-vectored vaccines against animal diseases: Current progress
HU Yang, WANG Ming-shu, CHENG An-chun, JIA Ren-yong, YANG Qiao, WU Ying, LIU Ma-feng, ZHAO Xin-xin, ZHU De-kang, CHEN Shun, ZHANG Sha-qiu, WANG Yin, GAO Qun, OU Xu-min, MAO Sai, WEN Xing-jian, XU Zhi-wen, CHEN Zheng-li, ZHU Ling, LUO Qi-hui, TIAN Bin, PAN Lei-chang, Mujeeb Ur REHMAN, LIU Yun-ya, YU Yan-ling, ZHANG Ling, CHEN Xiao-yue
2020, 19 (8): 1928-1940.   DOI: 10.1016/S2095-3119(20)63175-6
Abstract242)      PDF in ScienceDirect      
Recombinant virus-vectored vaccines are novel agents that can effectively activate specific and nonspecific immunity, are multivalent and multieffective, and have high safety ratings.  Animal alphaherpesviruses have a large genome, contain multiple nonessential regions that do not affect viral replication and are capable of accepting the insertion of an exogenous gene and expressing the antigen protein.  Furthermore, animal alphaherpesviruses have a wide host spectrum, can replicate in the host and continuously stimulate the animal to produce immunity to the corresponding pathogen, thus making them ideal carriers for recombinant virus-vectored vaccines.  With the development of gene-editing technology, recombinant viruses capable of expressing foreign genes can be constructed by various methods.  Currently, studies on recombinant virus-vectored vaccines constructed based on animal alphaherpesviruses have involved poultry, pigs, cattle, sheep, and companion animals.  Studies have shown that the construction of recombinant animal alphaherpesviruses enables the acquisition of immunity to multiple diseases.  This article mainly summarizes the current progress on animal alphaherpesvirus-vectored vaccines, aiming to provide reference for the development of new animal alphaherpesvirus-vectored vaccines.
 
Reference | Related Articles | Metrics
Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry
WANG Hai-xia, WANG Ming-lun, WANG Xiu-zhong, DING Yu-long
2020, 19 (3): 700-708.   DOI: 10.1016/S2095-3119(19)62640-7
Abstract121)      PDF in ScienceDirect      
Development of highly sensitive and reliable method for detection of phytohormones is of great significance to study plant hormones and agricultural production.  In this study, an ultra-high-performance liquid chromatography-mass spectrometry/mass spectrometry method was established for separation and quantification of trans-zeatin, trans-zeatin riboside, gibberellin A3, indol-3-acetic acid, salicylic acid, abscisic acid, and jasmonic acid (JA) without any label.  The separation was performed on an Agilent Explus Plus C18 column by using methanol and water as mobile phases with gradient elution.  The target compounds were confirmed and quantified by mass spectrum via positive electrospray ionization for trans-zeatin, trans-zeatin riboside, indole-3-acetic acid, and via negative electrospray ionization for gibberellin3, salicylic acid, abscisic acid, and JA.  The limits of detection ranged from 0.0127 ng L–1 for gibberellin A3 (GA3) to 33.26 ng L–1 for JA and were lower than the currently reported values in literature.  The proposed method was applied for qualitative and quantitative analyses of phytohormones in peanut gynophores and pods.  The recoveries of the spiked phytohormones ranged from 80.20 to 102.56%.  The contents of seven endogenous hormones varied specifically in different development stages of peanuts.  This study provides a highly sensitive and selective detection method for hormones and elucidates the growth and development of the gynophore and peanut fruit, which are controlled by seven endogenous hormones.
 
Reference | Related Articles | Metrics
Immunogenicity and protective efficacy of DHBV DNA vaccines expressing envelope and capsid fusion proteins in ducks delivered by attenuated Salmonella typhimurium
LIU Si-yang, JIA Ren-yong, LI Qing-qing, FENG Dai-shen, SHEN Hao-yue, YANG Cui, WANG Ming-shu, ZHU De-kang, CHEN Shun, LIU Ma-feng, ZHAO Xin-xin, YIN Zhong-qiong, JING Bo, CHENG An-chun
2018, 17 (04): 928-939.   DOI: 10.1016/S2095-3119(17)61829-X
Abstract495)      PDF in ScienceDirect      
Duck hepatitis B virus (DHBV) shares many basic characteristics with hepatitis B virus (HBV) and is an attractive model for vaccine development.  In this study, DHBV DNA vaccines were designed to express envelope and capsid fusion proteins to enhance the breadth of immune response in ducks.  Attenuated Salmonella typhimurium (SL7207) was used as a carrier and adjuvant to boost the magnitude of immune response.  Based on this strategy, novel DNA vaccines (SL7207-pVAX1-LC and SL7207-pVAX1-SC) were generated.  Growth kinetics, genetic stabilities and relative transcription levels of the L, S and C genes introduced by these vaccine strains were measured before inoculation to guarantee safety and efficacy.  The relative transcript levels of the CD4 and CD8 T genes and the antibody levels (IgY) in ducks receiving the vaccines were higher than those in single gene delivered groups.  Additionally, the copy number of covalently closed circular DNA in hepatocytes after DHBV challenge also provided evidence that our fusion vaccines could enhance the protective efficiency against DHBV infection in ducks.
Reference | Related Articles | Metrics
The codon-optimized capsid gene of duck circovirus can be highly expressed in yeast and self-assemble into virus-like particles
YANG Cui, XU Yu, JIA Ren-yong, LIU Si-yang, WANG Ming-shu, ZHU De-kang, CHEN Shun, LIU Ma-feng, ZHAO Xin-xin, SUN Kun-feng, JING Bo, YIN Zhong-qiong, CHENG An-chun
2017, 16 (07): 1601-1608.   DOI: 10.1016/S2095-3119(16)61605-2
Abstract863)      PDF in ScienceDirect      
    The capsid (Cap) protein, which is the only structural protein of duck circovirus (DuCV), is the most important antigen for the development of vaccines against DuCV and the virus’s serological diagnostic methods. In order to use yeast expression system to produce a large quantities of DuCV Cap protein which is close to its natural form to display the antigen peptides perfectly, the Cap gene was optimized into the codon-optimized capsid (Opt-Cap) gene towards the preference of yeast firstly. Then, the genes of Cap and Opt-Cap were separately cloned into pPIC9K plasmid and transformed into Picha pastoris GS115. The strains that displayed the phenotype of Mut+ and contained multiple inserts of expression cassette were selected from those colonies. After the induction expression, the secretory type of Cap protein, which was about 43 kDa, was best expressed under 0.5% (v/v) methanol and sorbitol induction. Compared with the Cap gene, the expression level of Opt-Cap gene was much higher. What’s more, the purified Cap protein had a good reactivity to its specific polyclone antibody and DuCV-positive serum, and it was able to self-assemble into virus-like particles (VLPs). These VLPs, with a diameter of 15–20 nm and without a nucleic acid structure, showed a high level of similarity to DuCV particles in size and shape. All of the results demonstrated that, based on the codon-optimization, it is suitable to use the P. pastoris expression system to produce DuCV VLPs on a large scale. It is the first time that a large amounts of DuCV VLPs were produced successfully in P. pastoris, which might be particularly useful for the further studies of serological diagnosis and vaccines of DuCV.
Reference | Related Articles | Metrics
Role of duck plague virus glycoprotein C in viral adsorption: Absence of specific interactions with cell surface heparan sulfate
JING Yan-chun, WU Ying, SUN Kun-feng, WANG Ming-shu, CHENG An-chun, CHEN Shun, JIA Ren-yong, ZHU De-kang, LIU Ma-feng, YANG Qiao, JING Bo, CHEN Xiao-yue
2017, 16 (05): 1145-1152.   DOI: 10.1016/S2095-3119(16)61550-2
Abstract931)      PDF in ScienceDirect      
Many mammalian herpes viruses utilize heparan sulfate (HS) moieties present on cell surface proteoglycans as receptors for cell entry, and this process also requires viral glycoprotein C (gC) homologues.  However, our understanding of the role of gC in facilitating attachment of other alpha-herpes viruses such as the duck plague virus (DPV) remains preliminary.  To study the role of gC during DPV infection, we used a gC-deleted mutant virus (DPV-ΔgC-EGFP).  Examination of the viral copy number by real-time PCR, as well as time course studies of viral adsorption and proliferation revealed that gC was involved in the viral binding to the cell surface.  The affinity of viral glycoproteins (gB-DPV, gC-DPV, and gE-DPV) to HS was assessed using a prokaryotic expression system and HiTrapTM Heparin HP column chromatography.  In addition, to confirm that gC played a role in the interaction between DPV and HS, viruses were treated with the HS analogue heparin and host cells were treated with its inhibitors heparinase prior to exposure to DPV-ΔgC-EGFP or wild-type strain Chinese virulent duck plague virus (DPV-CHv).  The effects of heparin and heparinase on virus infectivity demonstrated that function of gC on viral adsorption is independent of interactions between gC and heparin sulfate on cell surface.  All in all, this study demonstrated that the gC of DPV can mediate viral adsorption in an HS-independent manner, which distinguish it from the gC of some other alpha-herpes viruses.  Future studies will be required to identify the receptors involved in gC protein binding to cells.  This work provides us a foundation for further studies of examining the roles of gC in the adsorption during duck plague virus infection.
Reference | Related Articles | Metrics
Analysis of 13 kinds of steroid hormones in raw milk using modified QuEChERS method combined with UPLC-QTOF-MS
TAN Xin-tong, LI Zeng-mei, DENG Li-gang, ZHAO Shan-cang, WANG Ming-lin
2016, 15 (9): 2163-2174.   DOI: 10.1016/S2095-3119(16)61386-2
Abstract1847)      PDF in ScienceDirect      
    Thirteen kinds of steroid hormones in raw milk (cow, goat and buffalo milk) were analyzed with ultra performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) after extraction and cleanup with the modified QuEChERS method. These steroid hormones included 17β-estradiol, estriol, estrone, diethylstilbestrol, progesterone, melengestrol acetate, megestrol acetate, chlormadinone acetate, 19-nortestosterone, metandienone, boldenone, epitestosterone, and testosterone. The limits of detection for the raw milk basing on 3 times the signal to noise ratios (S/N=3) was in range of 0.07-0.51 µg kg–1, and the limits of quantification (basing on S/N=10 method) covered the ranges from 0.23 to 1.7 µg kg–1. With matrix external standard method, the substances presented recoveries over the range 74.2–99.7%. Qualitative analysis was also done in the mass/mass spectrum (MS/MS) mode and each debris structure of 13 kinds of steroid hormones was achieved. The methodology was then applied in real raw milk samples which were collected in several areas of China and the progesterone was detected with high level.
Reference | Related Articles | Metrics
Development and optimization of a double antibody sandwich ELISA for the detection of goose T cell surface CD8α molecule
ZHANG Wei, CHENG Bei-bei, CHEN Shun, WANG Ming-shu, JIA Ren-yong, ZHU De-kang, LIU Mafeng, LIU Fei, SUN Kun-feng, YANG Qiao, WU Ying, CHEN Xiao-yue, CHENG An-chun
2016, 15 (10): 2363-2368.   DOI: 10.1016/S2095-3119(16)61345-X
Abstract1649)      PDF in ScienceDirect      
    CD8, a glycoprotein on the surface of T cells, is involved in the defense against viral infection and plays significant roles in antigen presentation and in the antiviral immune response. CD8 is composed of two chains. Of these, the CD8α chain was chosen for the detection because it involved in both the CD8αα homodimer and the CD8αβ heterodimer. Here, we established a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for specific detection of goose CD8α (goCD8α). The results showed that the optimal coated antibody and antigen dilutions were 1:50 (the antibody titer was 1:12 800) and 1:32 (0.3 ng mL–1), respectively, while the optimal capture antibody and horseradish peroxidase (HRP)-labelled goat anti-rabbit IgG dilutions were 1:50 (the antibody titer was 1:51 200) and 1:4 000 (the antibody titer was 1:5 000), respectively. The optimal blocking buffer was 5% bovine serum albumin (BSA). The best incubating condition was overnight at 4°C, the best blocking time was 120 min and the best anti-capture antibody working time was 150 min. In addition, the minimum dose detectable by DAS-ELISA was 5×10–3 ng mL–1. Most importantly, goCD8α expression levels in goose spleen mononuclear cells (MNCs) post-Goose parvoviruse (GPV) infection were found to be significantly up-regulated using the DAS-ELISA method, which was consistent with previous results obtained using real-time quantitative PCR. In conclusion, the DAS-ELISA method reported here is a novel, specific technique for the clinical detection of goCD8α.
Reference | Related Articles | Metrics
Secondary metabolites of rice sheath blight pathogen Rhizoctonia solani Kühn and their biological activities
XU Liang, WANG Xiao-han, LUO Rui-ya, LU Shi-qiong, GUO Ze-jian, WANG Ming-an, LIU Yang, ZHOU Li-gang
2015, 14 (1): 80-87.   DOI: 10.1016/S2095-3119(14)60905-9
Abstract2057)      PDF in ScienceDirect      
Eight compounds were isolated from the fermentation cultures of rice sheath blight pathogen Rhizoctonia solani Kühn. They were identified as ergosterol (1), 6β-hydroxysitostenone (2), sitostenone (3), m-hydroxyphenylacetic acid (4), methyl m-hydroxyphenylacetate (5), m-hydroxymethylphenyl pentanoate (6), (Z)-3-methylpent-2-en-1,5-dioic acid (7) and 3-methoxyfuran-2-carboxylic acid (8) by means of physicochemical and spectroscopic analysis. Among them, 2, 3, 5–8 were isolated from R. solani for the first time. All the compounds were evaluated for their biological activities. 4–6 and 8 showed their inhibitory activities on the radical and germ elongation of rice seeds. 1, 4 and 7 showed moderate antibacterial activity to some bacteria. 4, 7 and 8 exhibited weak inhibitory activities on spore germination of Magnaporthe oryzae. 8 showed moderate antioxidant activity with the 1,1-diphenyl-2-picryhydrazyl (DPPH) and β-carotene-linoleic acid assays. This is the first time to reveal compounds 5, 6 and 8 from rice sheath blight pathogen R. solani to have in vitro phytotoxic activity.
Reference | Related Articles | Metrics
High-Level Accumulation of Exogenous Small RNAs Not Affecting Endogenous Small RNA Biogenesis and Function in Plants
SHEN Wan-xia, Neil A Smith, ZHOU Chang-yong, WANG Ming-bo
2014, 13 (5): 1017-1023.   DOI: 10.1016/S2095-3119(13)60525-0
Abstract2594)      PDF in ScienceDirect      
RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt) small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants with RNA interference (RNAi) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that viral satellite RNA (satRNA) infection does not affect siRNA and miRNA biogenesis or plant growth despite the extremely high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the specific yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat). We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not significantly affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no significant impact on normal plant development.
Reference | Related Articles | Metrics
Lactic Acid Reduces LPS-Induced TNF- and IL-6 mRNA Levels Through Decreasing I B Phosphorylation
XU Guang-yong, JIANG Jin-qi, WANG Ming, LI Jie, SU Jing-liang , REN Xiao-ming
2013, 12 (6): 1073-1078.   DOI: 10.1016/S2095-3119(13)60326-3
Abstract1375)      PDF in ScienceDirect      
This study explored the effects over time of lactic acid (LA) on I Bα phosphorylation and nuclear factor-kappa B (NF- B) p65 protein expression, and on tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) mRNA levels in rat intestinal mucosa microvascular endothelial cells (RIMMVECs) stimulated by lipopolysaccharide (LPS). I B , phosphorylated I B (p-I B ) and p65 protein levels were monitored by Western blot analysis, and TNF- and IL-6 mRNA levels were analyzed using real-time PCR. LA treatment reduced TNF- and IL-6 mRNA levels in LPS-stimulated RIMMVECs, with the greatest effect being after 3 h. The highest inhibitory effect of LA on I B phosphorylation to prevent activation of NFB was after 6 h. These results suggest that LA reduces TNF- and IL-6 mRNA levels through decreasing I B phosphorylation and blocking the dissociation of IKK complex, which prevents activation of NF- B.
Reference | Related Articles | Metrics
Isolating the Mutator Transposable Element Insertional Mutant Gene mio16 ofMaize UsingDoubleSelectedAmplification of Insertion Flanking Fragments (DSAIFF)
ZHONG Wen-juan, ZHANG Mei-dong, YANG Liu-qi, WANG Ming-chun, ZHENG Yong-lian, YANG Wenpeng GAO You-jun
2012, 12 (10): 1592-1600.   DOI: 10.1016/S1671-2927(00)8692
Abstract1452)      PDF in ScienceDirect      
Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (mio16) was identified in a pool of Mu inserted mutants. A modified method, termed the double selected amplification of insertion flanking fragments (DSAIFF), was employed to isolate the Mu flanking fragments (MFFs) of mio16. The target site duplications (TSDs) isolated from the Msp I and Mse I digested MFFs had a same 9-bp sequence and were confirmed to be the flanking sequence of one identically inserted gene. Co-segregation analysis suggested that the MFFs were associated with the mutant opaque endosperm, and mio16 was mapped in silico onto the physical position ranged from 229 965021 to 229 965409 bp of the maize chromosome 4.09 bin. The full-length cDNA of the wild-type gene was obtained by an RT-PCR primer-scanning technique, and Mio16 was found to putatively encode a homolog of the Arabidopsis MAP3K delta-1 protein kinase. RT-PCR result the mRNA expression of mio16 region anchored by primers Mu20 and af276 was not interrupted by Mu insertion. Further researches will be done to elucidate how the expression of mio16 is alternated by Mu insertion.
Reference | Related Articles | Metrics