Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting
Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang
2025, 24 (1): 114-131.   DOI: 10.1016/j.jia.2023.12.003
Abstract127)      PDF in ScienceDirect      

Low temperature (LT) in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.  Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.  These included morphological observation, measurements of starch synthase activity, and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.  Additionally, proteomic analysis was performed using tandem mass tags (TMT).  Results showed that the plumpness of wheat grains decreased after LT stress.  Moreover, the activities of sucrose synthase (SuS, EC 2.4.1.13) and ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) exhibited a significant reduction, leading to a significant reduction in the contents of amylose and amylopectin.  A total of 509 differentially expressed proteins (DEPs) were identified by proteomics analysis.  The Gene Ontology (GO) enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions, and the up-regulated seed storage protein (SSP) played an active role in the response of grains to LT stress and subsequent damage.  The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase (SPS), glucose-1-phosphate adenylyltransferase (glgC), and β-fructofuranosidase (FFase) in sucrose and starch metabolic pathways, thus affecting the synthesis of grain starch.  In addition, many heat shock proteins (HSPs) were found in the protein processing in endoplasmic reticulum pathways, which can resist some damage caused by LT stress.  These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield development after exposure to LT stress in spring.

Reference | Related Articles | Metrics
Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality
Qian Deng, Zeyu Dong, Zequan Chen, Zhuolin Shi, Ting Zhao, Xueying Guan, Yan Hu, Lei Fang
2024, 23 (10): 3264-3282.   DOI: 10.1016/j.jia.2024.06.011
Abstract182)      PDF in ScienceDirect      
Pectin is a major constituent of the plant cell wall.  Pectate lyase (PEL, EC 4.2.2.2) uses anti-β-elimination chemistry to cleave the α-1,4 glycosidic linkage in the homogalacturonan region of pectin.  However, limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.  In this study, we identified 597 PEL genes from 10 Malvaceae species.  Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies: Clades I, II, III, IV, Va, and Vb.  The two largest subfamilies, Clades I and II, contained 237 and 222 PEL members, respectively.  The members of Clades Va and Vb only contained four or five motifs, far fewer than the other subfamilies.  Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.  The PELs from Clades I, IV, Va, and Vb were expressed during the fiber elongation stage, but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.  We further performed single-gene haplotype association analysis in 2,001 Ghirsutum accessions and 229 Gbarbadense accessions.  Interestingly, 14 PELs were significantly associated with fiber length and strength traits in Gbarbadense with superior fiber quality, while only eight GhPEL genes were found to be significantly associated with fiber quality traits in Ghirsutum.  Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.


Reference | Related Articles | Metrics

Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17

Min Xu, Zhao Gao, Dalong Li, Chen Zhang, Yuqi Zhang, Qian He, Yingbin Qi, He Zhang, Jingbin Jiang, Xiangyang Xu, Tingting Zhao
2024, 23 (1): 141-154.   DOI: 10.1016/j.jia.2023.08.003
Abstract189)      PDF in ScienceDirect      

PLATZ is a novel zinc finger DNA-binding protein that plays an important role in regulating plant growth and development and resisting abiotic stress.  However, there has been very little research on the function of this family gene in tomatoes, which limits its application in germplasm resource improvement.  Therefore, the PLATZ gene family was identified and analyzed in tomato, and its roles were predicted and verified to provide a basis for in-depth research on SlPLATZ gene function.  In this study, the PLATZ family members of tomato were identified in the whole genome, and 19 SlPLATZ genes were obtained.  Functional prediction was conducted based on gene and promoter structure analysis and RNA-seq-based expression pattern analysis.  SlPLATZ genes that responded significantly under different abiotic stresses or were significantly differentially expressed among multiple tissues were screened as functional gene resources.  SlPLATZ17 was selected for functional verification by experiment-based analysis.  The results showed that the downregulation of SlPLATZ17 gene expression reduced the drought and salt tolerance of tomato plants.  Tomato plants overexpressing SlPLATZ17 had larger flower sizes and long, thin petals, adjacent petals were not connected at the base, and the stamen circumference was smaller.  This study contributes to understanding the functions of the SlPLATZ family in tomato and provides a reference for functional gene screening.


Reference | Related Articles | Metrics