Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.
DUAN Yao-ke, SU Yan HAN Rong, SUN Hao, GONG Hai-jun
2022, 21 (3): 685-696.   DOI: 10.1016/S2095-3119(21)63748-6
Abstract274)      PDF in ScienceDirect      
Nodulin 26-like intrinsic proteins (NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.  Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants, which is beneficial for the growth and development of plants.  Cucumber is one of the most widely consumed vegetables; however, the functions of NIPs in this crop are still largely unknown.  Here, we report the functional characteristics of CsNIP2;2.  It was found that CsNIP2;2 is a tandem repeat of CsNIP2;1, which had been demonstrated to be a silicon influx transporter gene.  CsNIP2;2 has a selectivity filter composed of cysteine, serine, glycine and arginine (CSGR), which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.  Xenopus laevis oocytes injected with CsNIP2;2 cRNA demonstrated a higher uptake of silicon than the control, and the uptake remained unchanged under low temperature.  CsNIP2;2 was found to be expressed in the root, stem, lamina and petiole, and exogenous silicon treatment decreased its expression in the stem but not in other tissues.  Transient expression of CsNIP2;2-eGFP fusion sequence in onion epidermal cells showed that CsNIP2;2 was localized to the cell nucleus, plasma membrane and an unknown structure inside the cell.  The results suggest that CsNIP2;2 is a silicon influx transporter in cucumber, and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.  These findings may be helpful for understanding the functions of NIPs in cucumber plants.
Reference | Related Articles | Metrics
Transcriptional search to identify and assess reference genes for expression analysis in Solanum lycopersicum under stress and hormone treatment conditions
DUAN Yao-ke, HAN Rong, SU Yan, WANG Ai-ying, LI Shuang, SUN Hao, GONG Hai-jun
2022, 21 (11): 3216-3229.   DOI: 10.1016/j.jia.2022.07.051
Abstract338)      PDF in ScienceDirect      

Tomato (Solanum lycopersicum) is a model plant for research on fruit development and stress response, in which gene expression analysis is frequently conducted.  Quantitative PCR (qPCR) is a widely used technique for gene expression analysis, and the selection of reference genes may affect the accuracy of results and even conclusions.  Although there have been some frequently used reference genes in tomato, it has been shown that the expressions of some of these genes are not constant in different tissues and environmental conditions.  Moreover, little information on genomic identification of reference genes is available in tomato.  Here, we mined the publicly available transcriptional sequencing data and screened out fifteen candidate reference genes, and the expression stability of these candidate genes and seven traditionally used ones were evaluated under stress and hormone treatment.  The results showed that over half of the selected candidate references were housekeeping genes in tomato cells.  Among the candidate reference genes and the traditionally used ones, the most stably expressed genes varied under different treatments, and most of these genes were recommended as preferred reference genes at least once except Solyc04g009030 and Solyc07g066610, two traditionally used reference genes.  This study provides some novel reference genes in tomato, and the preferred reference genes under different environmental stimuli, which may be useful for future research.  Our study suggests that excavating stably expressed genes from transcriptome sequencing data is a reliable approach to screening reference genes for qPCR analysis.  

Reference | Related Articles | Metrics
Genome-wide detection of selective signatures in a Jinhua pig population
XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun
2020, 19 (5): 1314-1322.   DOI: 10.1016/S2095-3119(19)62833-9
Abstract119)      PDF in ScienceDirect      
The aim of this study was to detect evidence for signatures of recent selection in the Jinhua pig genome.  These results can be useful to better understand the regions under selection in Jinhua pigs and might shed some lights on groups of genes that control production traits.  In the present study, we performed extended haplotype homozygosity (EHH) tests to identify significant core regions in 202 Jinhua pigs.  A total of 26 161 core regions spanning 636.42 Mb were identified, which occupied approximately 28% of the genome across all autosomes, and 1 158 significant (P<0.01) core haplotypes were selected.  Genes in these regions were related to several economically important traits, including meat quality, reproduction, immune responses and exterior traits.  A panel of genes including ssc-mir-365-2, KDM8, RABEP2, GSG1L, RHEB, RPH3AL and a signal pathway of PI3K-Akt were detected with the most extreme P-values.  The findings in our study could draw a comparatively genome-wide map of selection signature in the pig genome, and also help to detect functional candidate genes under positive selection for further genetic and breeding research in Jinhua and other pigs.
Reference | Related Articles | Metrics
Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum
SUN Hao-jie, SONG Jing-jing, XIAO Jin, XU Tao, WEI Xing, YUAN Chun-xia, CAO Ai-zhong, XING Liping, WANG Hai-yan, WANG Xiu-e
2018, 17 (08): 1720-1726.   DOI: 10.1016/S2095-3119(17)61866-5
Abstract404)      PDF in ScienceDirect      
Expressed sequence tags-derived polymerase chain reaction (EST-PCR) molecular markers specific for alien chromosomes can be used to not only monitor the introgressed alien chromatin in wheat background, but also provide the evidence of the syntenic relationship between homoeologous chromosomes.  In the present study, in order to develop high density and evenly distributed molecular markers specific for chromosome 6VL of Dasypyrum villosum, 297 primer pairs were designed based on the expressed sequence tags (EST) sequences, which were previously mapped in different bins of the long arms of wheat homoeologous 6AL, 6BL, and 6DL.  By using the Triticum aestivum, D. villosum, T. durum-D. villosum amphiploid, and T. aestivum-D. villosum alien chromosome lines involving chromosome 6V, it was found that 32 (10.77%) primers could amplify specific bands for chromosome 6V, and 31 could be allocated to chromosome arm 6VL.  These 6VL specific markers provided efficient tools for the characterization of structural variation involving the chromosome 6VL in common wheat background as well as for the selection of useful genes located on 6VL in breeding programs.
 
Reference | Related Articles | Metrics