Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review
LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
2022, 21 (9): 2465-2476.   DOI: 10.1016/j.jia.2022.07.013
Abstract633)      PDF in ScienceDirect      
Maize (Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions.  The main threat to current and future global maize production is heat stress.  Maize may suffer from heat stress in all of the growth stages, either continuously or separately.  In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages.  For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage.  The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages.  The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed.  Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
Reference | Related Articles | Metrics
The causes and impacts for heat stress in spring maize during grain filling in the North China Plain - A review
TAO Zhi-qiang, CHEN Yuan-quan, LI Chao, ZOU Juan-xiu, YAN Peng, YUAN Shu-fen, WU Xia, SUI Peng
2016, 15 (12): 2677-2687.   DOI: 10.1016/S2095-3119(16)61409-0
Abstract1065)      PDF in ScienceDirect      
High-temperature stress (HTS) at the grain-filling stage in spring maize (Zea mays L.) is the main obstacle to increasing productivity in the North China Plain (NCP). To solve this problem, the physiological mechanisms of HTS, and its causes and impacts, must be understood. The HTS threshold of the duration and rate in grain filling, photosynthetic characteristics (e.g., the thermal stability of thylakoid membrane, chlorophyll and electron transfer, photosynthetic carbon assimilation), water status (e.g., leaf water potential, turgor and leaf relative water content) and signal transduction in maize are reviewed. The HTS threshold for spring maize is highly desirable to be appraised to prevent damages by unfavorable temperatures during grain filling in this region. HTS has negative impacts on maize photosynthesis by damaging the stability of the thylakoid membrane structure and degrading chlorophyll, which reduces light energy absorption, transfer and photosynthetic carbon assimilation. In addition, photosynthesis can be deleteriously affected due to inhibited root growth under HTS in which plants decrease their water-absorbing capacity, leaf water potential, turgor, leaf relative water content, and stomatal conductance. Inhibited photosynthesis decrease the supply of photosynthates to the grain, leading to falling of kernel weight and even grain yield. However, maize does not respond passively to HTS. The plant transduces the abscisic acid (ABA) signal to express heat shock proteins (HSPs), which are molecular chaperones that participate in protein refolding and degradation caused by HTS. HSPs stabilize target protein configurations and indirectly improve thylakoid membrane structure stability, light energy absorption and passing, electron transport, and fixed carbon assimilation, leading to improved photosynthesis. ABA also induces stomatal closure to maintain a good water status for photosynthesis. Based on understanding of such mechanisms, strategies for alleviating HTS at the grain-filling stage in spring maize are summarized. Eight strategies have the potential to improve the ability of spring maize to avoid or tolerate HTS in this study, e.g., adjusting sowing date to avoid HTS, breeding heat-tolerance varieties, and tillage methods, optimizing irrigation, heat acclimation, regulating chemicals, nutritional management, and planting geometric design to tolerate HTS. Based on the single technology breakthrough, a comprehensive integrated technical system is needed to improve heat tolerance and increase the spring maize yield in the NCP.  
Reference | Related Articles | Metrics
Yield and quality of maize stover: Variation among cultivars and effects of N fertilization
LIANG Ming-yuan, WANG Gui-yan, LIANG Wei-li, SHI Peng-fei, DANG Jing, SUI Peng, HU Chun-sheng
2015, 14 (8): 1581-1587.   DOI: 10.1016/S2095-3119(15)61077-2
Abstract2116)      PDF in ScienceDirect      
Biomass yields and concentrations of crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber (CF) were analyzed for five cultivars of summer-sown maize (Zea mays L.) stover grown in field trials at three rates of N fertilization, and sampled immediately after grain harvest. The results revealed differences in yields and concentrations of nutrients according to stalk height and hence harvest portion among the cultivars. N application greatly increased biomass yield and CP, especially in upper stalks and to a lesser extent, EE. Concentrations of NDF and ADF decreased as N rate increased. The results show that stovers from all local popular maize cultivars are suitable as animal fodder and that moderate N application improves feed quality of stover.
Reference | Related Articles | Metrics
Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs
LONG Pan, SUI Peng, GAO Wang-sheng, WANG Bin-bin, HUANG Jian-xiong, YAN Peng, ZOU Juan-xiu, YAN Ling-ling, CHEN Yuan-quan
2015, 14 (4): 774-787.   DOI: 10.1016/S2095-3119(14)60796-6
Abstract2039)      PDF in ScienceDirect      
To make recycling utilization of organic materials produced in various agricultural systems, five kinds of organic materials were applied in a field test, including crop straw (CS), biogas residue (BR), mushroom residue (MR), wine residue (WR), pig manure (PM), with a mineral fertilizer (CF) and a no-fertilizer (CK) treatment as a control. Our objectives were: i) to quantify the effects of organic materials on soil C and N accumulation; ii) to evaluate the effects of organic materials on soil aggregate stability, along with the total organic carbon (TOC), and N in different aggregate fractions; and iii) to assess the relationships among the organic material components, soil C and N, and C, N in aggregate fractions. The trial was conducted in Wuqiao County, Hebei Province, China. The organic materials were incorporated at an equal rate of C, and combined with a mineral fertilizer in amounts of 150 kg N ha-1, 26 kg P ha-1 and 124 kg K ha-1 respectively during each crop season of a wheat-maize rotation system. The inputted C quantity of each organic material treatment was equivalent to the total amount of C contained in the crop straw harvested in CS treatement in the previous season. TOC, N, water-stable aggregates, and aggregate-associated TOC and N were investigated. The results showed that organic material incorporation increased soil aggregation and stabilization. On average, the soil macroaggregate proportion increased by 14%, the microaggregate proportion increased by 3%, and mean-weight diameter (MWD) increased by 20%. TOC content followed the order of PM>WR>MR>BR>CS>CK>CF; N content followed the order WR>PM>MR>BR>CS>CF>CK. No significant correlation was found between TOC, N, and the quality of organic material. Soil silt and clay particles contained the largest part of TOC, whereas the small macroaggregate fraction was the most sensitive to organic materials. Our results indicate that PM and WR exerted better effects on soil C and N accumulation, followed by MR and BR, suggesting that organic materials from ex situ farmland could promote soil quality more as compared to straw returned in situ.
Reference | Related Articles | Metrics
Soil Nitrous Oxide Emissions Under Maize-Legume Intercropping System in the North China Plain
HUANG Jian-xiong, CHEN Yuan-quan, SUI Peng, NIE Sheng-wei, GAO Wang-sheng
2014, 13 (6): 1363-1372.   DOI: 10.1016/S2095-3119(13)60509-2
Abstract1531)      PDF in ScienceDirect      
Many studies have focused on various agricultural management measures to reduce agricultural nitrous oxide (N2O) emission. However, few studies have investigated soil N2O emissions in intercropping systems in the North China Plain. Thus, we conducted a field experiment to compare N2O emissions under monoculture and maize-legume intercropping systems. In 2010, five treatments, including monocultured maize (M), maize-peanut (MP), maize-alfalfa (MA), maize-soybean (MS), and maize-sweet clover (MSC) intercropping were designed to investigate this issue using the static chamber technique. In 2011, M, MP, and MS remained, and monocultured peanuts (P) and soybean (S) were added to the trial. The results showed that total production of N2O from different treatments ranged from (0.87±0.12) to (1.17±0.11) kg ha-1 in 2010, while those ranged from (3.35±0.30) to (9.10±2.09) kg ha-1 in 2011. MA and MSC had no significant effect on soil N2O production compared to that of M (P<0.05). Cumulative N2O emissions from MP in 2010 were significantly lower than those from M, but the result was the opposite in 2011 (P<0.05). MS significantly reduced soil N2O emissions by 25.55 and 48.84% in 2010 and 2011, respectively (P<0.05). Soil N2O emissions were significantly correlated with soil water content, soil temperature, nitrification potential, soil NH4 +, and soil NO3 - content (R2=0.160-0.764, P<0.01). A stepwise linear regression analysis indicated that soil N2O release was mainly controlled by the interaction between soil moisture and soil NO3 - content (R2=0.828, P<0.001). These results indicate that MS had a coincident effect on soil N2O flux and significantly reduced soil N2O production compared to that of M over two growing seasons.
Reference | Related Articles | Metrics
Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain
TAO Zhi-qiang, SUI Peng, CHEN Yuan-quan, LI Chao, NIE Zi-jin, YUAN Shu-fen, SHI Jiangtao
2013, 12 (12): 2179-2188.   DOI: 10.1016/S2095-3119(13)60347-0
Abstract1221)      PDF in ScienceDirect      
High temperature stress (HTS) on spring maize (Zea mays L.) during the filling stage is the key factor that limits the yield increase in the North China Plain (NCP). Subsoiling (SS) and ridge tillage (R) were introduced to enhance the ability of spring maize to resist HTS during the filling stage. The field experiments were conducted during the 2011 and 2012 maize growing seasons at Wuqiao County, Hebei Province, China. Compared with rotary tillage (RT), the net photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll relative content (SPAD) of maize leaves was increased by 40.0, 42.6, 12.8, and 29.7% under SS, and increased by 20.4, 20.0, 5.4, and 14.2% under R, repectively. However, the treatments reduce the intercellular CO2 concentration under HTS. The SS and R treatments increased the relative water content (RWC) by 11.9 and 6.2%, and the water use efficiency (WUE) by 24.3 and 14.3%, respectively, compared with RT. The SS treatment increased the root length density and soil moisture in the 0-80 cm soil profile, whereas the R treatment increased the root length density and soil moisture in the 0-40 cm soil profile compared with the RT treatment. Compared with 2011, the number of days with temperatures 33°C was more 2 d and the mean day temperature was higher 0.9°C than that in 2012, whereas the plant yield decreased by 2.5, 8.5 and 10.9%, the net photosynthetic rate reduced by 7.5, 10.5 and 18.0%, the RWC reduced by 3.9, 5.6 and 6.2%, and the WUE at leaf level reduced by 1.8, 5.2 and 13.1% in the SS, R and RT treatments, respectively. Both the root length density and the soil moisture also decreased at different levels. The yield, photosynthetic rate, plant water status, root length density, and soil moisture under the SS and R treatments declined less than that under the RT treatment. The results indicated that SS and R can enhance the HTS resistance of spring maize during the filling stage, and led to higher yield by directly improving soil moisture and root growth and indirectly improving plant water status, photosynthesis and grain filling. The study can provide a theoretical basis for improving yield of maize by adjusting soil tillage in the NCP.
Reference | Related Articles | Metrics
Nitrate Leaching from Maize Intercropping Systems with N Fertilizer Over-Dose
NIE Sheng-wei, A Egrinya Eneji, CHEN Yuan-quan, SUI Peng, HUANG Jian-xiong, HUANG Shao-min
2012, 12 (9): 1555-1565.   DOI: 10.1016/S1671-2927(00)8688
Abstract1445)      PDF in ScienceDirect      
A 2-yr field experiment was conducted on a calcareous alluvial soil with four summer maize intercropping systems at Shangzhuang Experiment Station (116.3°E, 39.9°N) in the North China Plain. The objective was to determine nitrate leaching from intercropping systems involving maize (Zea mays L.): sole maize (CK), maize + soybean (CST), maize + groundnut (CGT), maize+ ryegrass (CHM), and maize + alfalfa (CMX). Intercropping greatly reduced nitrate accumulation in the 100-200 cm soil layers compared with maize monoculture. Nitrate accumulation under intercropping systems decreased significantly at the 140-200 cm soil depth; the accumulation varied in the order CK>CST>CMX>CHM>CGT. However, compared to the CK treatment, nitrate leaching losses during the maize growing period were reduced by 20.9- 174.8 (CGT), 35.2-130.8 (CHM), 60.4-122.0 (CMX), and 30.6-82.4 kg ha-1 (CST). The results also suggested that intercropping is an effective way to reduce nitrogen leaching in fields with N fertilizer over-dose.
Reference | Related Articles | Metrics