Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean
GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
2023, 22 (2): 434-446.   DOI: 10.1016/j.jia.2022.08.047
Abstract257)      PDF in ScienceDirect      

Soybean yield has been increased through high planting density, but investigating plant height and petiole traits to select for compact architecture, lodging resistance, and high yield varieties is an underexplored avenue to improve yield.  We compared the relationship between yield-related traits, lodging resistance, and petiole-associated phenotypes in the short petiole germplasm M657 with three control accessions over 2017-2018 in four locations of the Huang-Huai region.  The results showed M657 exhibited stable and high tolerance to high planting density and resistance to lodging, especially at the highest density (8×105 plants ha-1).  Regression analysis showed that shorter petiole length was significantly associated with increased lodging resistance.  Yield analysis showed that M657 achieved higher yields under higher densities, especially in the north Huang-Huai region.  There are markedly different responses to intra- and inter-row spacing designs among varieties in both lodging and yield related to location and density.  Lodging was positively correlated with planting density, plant height, petiole length, and number of effective branches, and negatively correlated with stem diameter, seed number per plant, and seed weight per plant.  The yield of soybean was increased by appropriately increasing planting density on the basis of current soybean varieties in the Huang-Huai region.  This study provides a valuable new germplasm resource for introgression of compact architecture traits amenable to high yield in high density planting systems and establishes a high-yield model of soybean in the Huang-Huai region.


Reference | Related Articles | Metrics
Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines
GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
2022, 21 (9): 2508-2520.   DOI: 10.1016/j.jia.2022.07.004
Abstract307)      PDF in ScienceDirect      

Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield.  Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice.  Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency.  The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018.  Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days.  Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.

Reference | Related Articles | Metrics
Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)
LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan
2022, 21 (7): 1903-1912.   DOI: 10.1016/S2095-3119(21)63675-4
Abstract248)      PDF in ScienceDirect      
With the development of sequencing technology, insertions-deletions (InDels) have been increasingly reported to be involved in the genetic deter mination of agronomical traits.  However, most studies have focused on the identification and application of short-InDels (1–15 bp) for genetic analysis.  The objective of this study was to deeply deploy long-InDels (>15 bp) for the genetic analysis of important agronomic traits in soybean.  A total of 13 573 polymorphic long-InDels were identified between parents Zhongpin 03-5373 (ZP) and Zhonghuang 13 (ZH), which were unevenly distributed on 20 chromosomes of soybean, varying from 321 in Chr11 to 1 246 in Chr18.  Consistent with the distribution pattern of annotated genes, the average density of long-InDels in arm regions was significantly higher than that in pericentromeric regions at the P=0.01 level.  A total of 2 704 (19.9% of total) long-InDels were located in genic regions, including 319 large-effect long-InDels, which resulted in truncated or elongated protein sequences.  A previously identified QTL (qPH16) underlying plant height was further analyzed, and it was found that 26 out of 35 (74.3%) long-InDel markers located in the qPH16 region showed clear polymorphisms between parents ZP and ZH.  Seven markers, including three long-InDels and four previously reported SNP markers, were used to genotype 242 recombinant inbred lines derived from ZP×ZH.  As a result, the qPH16 locus was narrowed from a 960-kb region to a 477.55-kb region, containing 65 annotated genes.  Therefore, these long-InDels are a complementary genetic resource of SNPs and short-InDels for plant height and can facilitate genetic studies and molecular assisted selection breeding in soybean.
Reference | Related Articles | Metrics
QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean
TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan
2022, 21 (4): 933-946.   DOI: 10.1016/S2095-3119(21)63693-6
Abstract241)      PDF in ScienceDirect      
Plant height is an important agronomic trait, which is governed by multiple genes with major or minor effects.  Of numerous QTLs for plant height reported in soybean, most are in large genomic regions, which results in a still unknown molecular mechanism for plant height.  Increasing the density of molecular markers in genetic maps will significantly improve the efficiency and accuracy of QTL mapping.  This study constructed a high-density genetic map using 4 011 recombination bin markers developed from whole genome re-sequencing of 241 recombinant inbred lines (RILs) and their bi-parents, Zhonghuang 13 (ZH) and Zhongpin 03-5373 (ZP).  The total genetic distance of this bin map was 3 139.15 cM, with an average interval of 0.78 cM between adjacent bin markers.  Comparative genomic analysis indicated that this genetic map showed a high collinearity with the soybean reference genome.  Based on this bin map, nine QTLs for plant height were detected across six environments, including three novel loci (qPH-b_11, qPH-b_17 and qPH-b_18).  Of them, two environmentally stable QTLs qPH-b_13 and qPH-b_19-1 played a major role in plant height, which explained 10.56–32.7% of the phenotypic variance.  They were fine-mapped to 440.12 and 237.06 kb region, covering 54 and 28 annotated genes, respectively.  Via the function of homologous genes in Arabidopsis and expression analysis, two genes of them were preferentially predicted as candidate genes for further study.
Reference | Related Articles | Metrics
Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology
OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan
2022, 21 (12): 3524-3539.   DOI: 10.1016/j.jia.2022.08.095
Abstract284)      PDF in ScienceDirect      

The leaf is the main photosynthetic organ of plants, and it plays a significant role in the yield of crop species.  Identifying the causal mutations and candidate genes that underlie leaf phenotypic variation is an important breeding target in soybean grain yield improvement.  An ethyl methyl sulfonate (EMS)-induced soybean mutant DWARFCRINKLEDLEAF1 (DCL1) with an aberrant crinkled leaf phenotype was identified in the background of the soybean cultivar Zhongpin 661 (Zp661).  We constructed an F2 segregating population from a cross between Zp661 and DCL1 in order to investigate the genomic locus associated with the crinkled leaf trait.  Using bulk segregant analysis (BSA) combined with the whole-genome resequencing method, the Euclidean distance (ED) correlation algorithm detected 12 candidate genomic regions with a total length of 20.32 Mb that were linked to the target trait.  Following a comparative analysis of the sequence data for the wild-type and mutant pools, only one single nucleotide mutation (C:G>T:A) located on the first exon of Glyma.19G207100 was found to be associated with the trait.  Candidate gene validation based on a CAPS marker derived from the detected single-nucleotide polymorphism (SNP) indicated a nucleotide polymorphism between the two parents.  Therefore, our findings reveal that Glyma.19G207100, which is renamed as GLYCINE MAX DWARF CRINKLED LEAF 1 (GmDCL1), is a promising candidate gene involved in the morphogenesis of the crinkled leaf trait of the soybean mutant DCL1.  This study provides a basis for the functional validation of this gene, with prospects for soybean breeding targeting grain yield enhancement.

Reference | Related Articles | Metrics
Establishment and application of an accurate identification method for fragrant soybeans
ZHANG Yong-fang, ZHANG Chun-yan, ZHANG Bo, YIN Man, HONG Hui-long, YU Li-li, GAO Hua-wei, GU Yong-zhe, LIU Zhang-xiong, LI Fu-heng, QIU Li-juan
2021, 20 (5): 1193-1203.   DOI: 10.1016/S2095-3119(20)63328-7
Abstract135)      PDF in ScienceDirect      
In order to screen the aroma characteristics of soybean, a new method was established which can quickly quantify the content of 2-acetyl-1pyrroline (2-AP), an important compound related to soybean aroma, using gas chromatography-mass spectrometry (GC-MS).  Based on peak profile, total peak area and retention time as test indexes, an accurate identification method for fragrant soybeans was established.  The optimum parameters of the protocol consisted of column temperature 70°C, sample injector temperature 180°C, optimum extraction alcohol content 1 mL, NaCl content 0.1 g, ultrasonication time 10 min, and extraction time 1 h, which were established by using the orthogonal test of single factors and three factors with four levels (L9(3)4).  2-AP content of leaves had significant correlations with seeds, which were easier to measure.  The protocol was simple and easy to carry out, consumed only small amounts of reagents, and provided accurate and reliable results with good reproducibility.  A total of 101 soybean genotypes from different geographical sources were analyzed using this protocol.  The results showed that the average content of 2-AP was 0.29 mg L–1, ranging from 0.094 to 1.816 mg L–1, and the genetic diversity index was 0.54.  Among all genotypes-tested, they were classified into three grades, including seven elite genotypes identified as “grade one fragrant soybeans”, which were Zhonglong 608, Heinong 88, Ha13-2958, Hongmiandou, Heinong 82, Huangmaodou, and Jiyu 21.  These results provide both an identification technique and several elite aroma genotypes for gene discovery and good quality breeding in soybean.
 
Reference | Related Articles | Metrics
Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate
GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan
2020, 19 (5): 1186-1196.   DOI: 10.1016/S2095-3119(19)62747-4
Abstract178)      PDF in ScienceDirect      
Glyphosate-tolerant soybean is the most widely planted genetically modified crop worldwide.   However, soybean remains recalcitrant to routine transformation because of the low infection efficiency of Agrobacterium to soybean and lack of useful selectable markers.  In this study, several Agrobacterium strains and cell densities were compared by transient expression of the GUS gene.  The results showed that Agrobacterium strain Ag10 at cell densities of OD600 of 0.6–0.9 yielded the highest infection efficiency in Agrobacterium-mediated soybean cotyledonary node transformation system.  Meanwhile, a simple and rapid method was developed for identification of glyphosate tolerance in putative T0 transgenic plants, consisting of spotting plantlets with 1 µL Roundup®.  The whole cycle of genetic transformation could be shortened to about 3 mon by highly efficient selection with glyphosate during the transformation process and application of the spot assay in putative T0 transgenic plantlets.  The transformation frequency ranged from 2.9 to 5.6%.  This study provides an improved protocol for development and identification of glyphosate-tolerant transgenic soybeans.
Reference | Related Articles | Metrics
Pseudomonas sp. TK35-L enhances tobacco root development and growth by inducing HRGPnt3 expression in plant lateral root formation
CAO Yuan-yuan, NI Hai-ting, LI Ting, LAY Khien-duc, LIU Dai-song, HE Xiang-yi, OU Kang-miao, TANG Xin-yun, WANG Xiao-bo, Qiu Li-juan
2020, 19 (10): 2549-2560.   DOI: 10.1016/S2095-3119(20)63266-X
Abstract140)      PDF in ScienceDirect      
Rhizosphere colonization is a key requirement for the application of plant growth-promoting rhizobacteria (PGPR) as a biofertilizer.  Signaling molecules are often exchanged between PGPR and plants, and genes in plants may respond to the action of PGPR.  Here, the luciferase luxAB gene was electrotransformed into Pseudomonas sp. strain TK35, a PGPR with an affinity for tobacco, and the labelled TK35 (TK35-L) was used to monitor colonization dynamics in the tobacco rhizosphere and evaluate the effects of colonization on tobacco growth and root development.  The transcript levels of the hydroxyproline-rich glycoprotein HRGPnt3 gene, a lateral root induction indicator, in tobacco roots were examined by qPCR.  The results showed that TK35-L could survive for long periods in the tobacco rhizosphere and colonize new spaces in the tobacco rhizosphere following tobacco root extension, exhibiting significant increases in root development, seedling growth and potassium accumulation in tobacco plants.  The upregulation of HRGPnt3 transcription in the inoculated tobacco suggested that TK35-L can promote tobacco root development by upregulating the transcript levels of the HRGPnt3 gene, which promotes tobacco seedling growth.  These findings lay a foundation for future studies on the molecular mechanism underlying the plant growth-promoting activities of PGPR.  Furthermore, this work provided an ideal potential strain for biofertilizer production.
Reference | Related Articles | Metrics
The identification of presence/absence variants associated with the apparent differences of growth period structures between cultivated and wild soybeans
LI Yan-fei, HONG Hui-long, LI Ying-hui, MA Yan-song, CHANG Ru-zhen, QIU Li-juan
2016, 15 (2): 262-270.   DOI: 10.1016/S2095-3119(15)61048-6
Abstract1832)      PDF in ScienceDirect      
The cultivated soybean (Glycine max (L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb. & Zucc. in growth period structure, by a shorter vegetative phase (V), a prolonged reproductive phase (R) and hence a larger R/V ratio. However, the genetic basis of the domestication of soybean from wild materials is unclear. Here, a panel of 123 cultivated and 97 wild accessions were genotyped using a set of 24 presence/absence variants (PAVs) while at the same time the materials were phenotyped with respect to flowering and maturity times at two trial sites located at very different latitudes. The major result of this study showed that variation at PAVs is informative for assessing patterns of genetic diversity in Glycine spp. The genotyping was largely consistent with the taxonomic status, although a few accessions were intermediate between the two major clades identified. Allelic diversity was much higher in the wild germplasm than in the cultivated materials. A significant domestication signal was detected at 11 of the PAVs at 0.01 level. In particular, this study has provided information for revealing the genetic basis of photoperiodism which was a prominent feature for the domestication of soybean. A significant marker-trait association with R/V ratio was detected at 14 of the PAVs, but stripping out population structure reduced this to three. These results will provide markers information for further finding of R/V related genes that can help to understand the domestication process and introgress novel genes in wild soybean to broaden the genetic base of modern soybean cultivars.
Reference | Related Articles | Metrics
Stability of growth periods traits for soybean cultivars across multiple locations
WANG Xiao-bo, LIU Zhang-xiong, YANG Chun-yan, XU ran, LU Wei-guo, ZHANG Li-feng, WANG Qian, WEI Su-hong, YANG Chun-ming, WANG Hui-cai, WANG Rui-zhen, ZHOU Rong, CHEN Huaizhu, CHANG Ru-zhen, QIU Li-juan
2016, 15 (05): 963-972.   DOI: 10.1016/S2095-3119(15)61152-2
Abstract2084)      PDF in ScienceDirect      
    The growth periods (GPs, from planting/emergence to reproductive stage 8 (R8) of soybean cultivars vary in different ecological regions, especially in China with a very complex soybean cropping system. In this study, a 3-yr experimental study was undertaken in three geographical locations of China from 2008 to 2010, including the Northeast (40.66–45.85°N), Huang-Huai (34.75–38.04°N) and southern (22.82–30.60°N) eco-regions with about 250 accessions in each region to clarify the classification of maturity group (MG) and identify the cultivars with stable GP to increase the knowledge about the GP distribution of soybean cultivars in China. GPs of soybean cultivars in different eco-regions were significant different with a gradual decrease from 115–125 d in the Northeast part to the 85–100 d in the southern part of China. The geographical location was the major factor for GP of cultivars from the Northeast, while the year of planting was the major factor affecting the stability of GPs in Huang-Huai summer and southern summer soybean. AMMI2 (additive main effects and multiplicative interaction)-Biplot analysis showed that the GPs of soybean cultivars from the Northeast eco-region have a comparatively satisfactory environmental stability. Moreover, soybean cultivars with moderate GP/MG and stable environment adaptability in different eco-regions were identified based on the linear regression and AMMI analysis, which was important for the accurate classification of soybean MGs in future. Taken together, our results reflected the genetic diversity, geographical distribution and environmental stability of the Chinese soybean GP trait. Soybean cultivars with stable GP for various Chinese eco-regions would be beneficial for Chinese soybean genetic improvement, varietal introduction, exchange, and soybean breeding program for wide adaptability.
Reference | Related Articles | Metrics
Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean
GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG , Ru-zheng , QIU Li-juan
2015, 14 (7): 1242-1250.   DOI: 10.1016/S2095-3119(14)60907-2
Abstract1969)      PDF in ScienceDirect      
Soybean is a widely planted genetically modified crop around the world. However, it is still one of the most recalcitrant crops for genetic transformation due to the difficulty of regeneration via organogenesis and some factors that affect the transformation efficiency. The percentages of resistant bud formation and transient expression efficiency are important indexes reflecting the regeneration and transformation efficiency of soybean. In this study, the percentages of resistant bud formation and transient expression of β-glucuronidase (GUS) were compared after treatment with sonication or surfactant and co-treatment with both. The results showed that treatment with either sonication or surfactant increased the percentage of resistant bud formation and transient expression efficiency. The highest percentages were acquired and significantly improved when cotyledon node explants were co-treated with sonication for 2 s and surfactant at 0.02% (v:v) using two different soybean genotypes, Jack and Zhonghuang 10. The improved transformation efficiency of this combination was also evaluated by development of herbicide-tolerant soybeans with transformation efficiency at 2.5–5.7% for different genotypes, which was significantly higher than traditional cotyledonary node method in this study. These results suggested that co-treatment with surfactant and sonication significantly improved the percentages of resistance bud formation, transient expression efficiency and stable transformation efficiency in soybean.
Reference | Related Articles | Metrics
A Dominant Locus, qBSC-1, Controls β Subunit Content of Seed Storage Protein in Soybean (Glycine max (L.) Merri.)
WANG Jun, LIU Lin, GUO Yong, WANG Yong-hui, ZHANG Le, JIN Long-guo, GUAN Rong-xia, LIU Zhang-xiong, WANG Lin-lin, CHANG Ru-zhen , QIU Li-juan
2014, 13 (9): 1854-1864.   DOI: 10.1016/S2095-3119(13)60579-1
Abstract1422)      PDF in ScienceDirect      
Soybean seed storage protein is one of the most important plant vegetable proteins, and β subunit is of great significance to enhance soybean protein quality and processing property. F2 segregated population and residual heterozygous lines (RHL) derived from the cross between Yangyandou (low level of β subunit) and Zhonghuang 13 (normal level of β subunit) were used for mapping of β subunit content. Our results showed that β subunit content was controlled by a single dominant locus, qBSC-1 (β subunit content), which was mapped to a region of 11.9 cM on chromosome 20 in F2 population of 85 individuals. This region was narrowed down to 2.5 cM between BARCSOYSSR_20_0997 and BARCSOYSSR_20_0910 in RHL with a larger population size of 246 individuals. There were 48 predicted genes within qBSC-1 region based on the reference genome (Glyma 1.0, Williams 82), including the two copies of β subunit coding gene CG4. An InDel marker developed from a thymine (TT) insertion in one copy of CG4 promoter region in Yangyandou cosegregrated with BARCSOYSSR_20_0975 within qBSC-1 region, suggesting that this InDel marker maybe useful for marker-assisted selection (MAS).
Reference | Related Articles | Metrics