Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction

Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao
2024, 23 (5): 1634-1643.   DOI: 10.1016/j.jia.2023.11.048
Abstract103)      PDF in ScienceDirect      

Presently, integrating multi-omics information into a prediction model has become a ameliorate strategy for genomic selection to improve genomic prediction accuracy.  Here, we set the genomic and transcriptomic data as the training population data, using BSLMM, TWAS, and eQTL mapping to prescreen features according to | ^βb|>0, top 1% of phenotypic variation explained (PVE), expression-associated single nucleotide polymorphisms (eSNPs), and egenes (false discovery rate (FDR)<0.01), where these loci were set as extra fixed effects (named GBLUP-Fix) and random effects (GFBLUP) to improve the prediction accuracy in the validation population, respectively.  The results suggested that both GBLUP-Fix and GFBLUP models could improve the accuracy of longissimus dorsi muscle (LDM), water holding capacity (WHC), shear force (SF), and pH in Huaxi cattle on average from 2.14 to 8.69%, especially the improvement of GFBLUP-TWAS over GBLUP was 13.66% for SF.  These methods also captured more genetic variance than GBLUP.  Our study confirmed that multi-omics-assisted large-effects loci prescreening could improve the accuracy of genomic prediction.

Reference | Related Articles | Metrics
Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties
WANG Qiong, QIN Zhen-han, ZHANG Wei-wei, CHEN Yan-hua, ZHU Ping, PENG Chang, WANG Le, ZHANG Shu-xiang, Gilles COLINET
2022, 21 (9): 2720-2733.   DOI: 10.1016/j.jia.2022.07.018
Abstract177)      PDF in ScienceDirect      

Investigating the dynamics and distribution of soil phosphorus (P) fractions can provide a basis for enhancing P utilization by crops.  Four treatments from a 29-year long-term experiment in black soil with maize cropping were involved in this study: no fertilizer (CK), inorganic nitrogen and potassium (NK), inorganic nitrogen, phosphorus, and potassium (NPK), and NPK plus manure (NPKM).  We analyzed soil P fractions in different soil layers using a modified Hedley sequential method.  The long-term NPKM treatment significantly increased total P by 0.6–1.6 times in the different soil layers.  The Olsen-P concentration far exceeded the environmental threshold for soil Olsen-P (50.6 mg kg–1) in the NPKM treatment in the 0–60 cm soil profile.  Moreover, the concentrations and proportion of labile and partially labile inorganic P (Pi) fractions (i.e., NaHCO3-extracted Pi, NaOH-extracted Pi, and dilute HCl-extracted Pi) to the sum of all P fractions (Pt) in the 0–60 cm soil profile were higher in the NPKM treatment than in the NPK treatment, indicating that manure could promote the transformation of non-labile into more labile forms of P in soil, possibly by manure reducing P fixation by soil particles.  Soil organic matter, Mehlich-3 extractable iron (Fe), and organic-bound aluminum were increased by fertilization, and were the main factors influencing the differences in the P fractions in the 0–20 cm soil layer.  Soil mineral components, i.e., free Fe oxide and CaCO3, were the main factors influencing the P fractions in the subsoil.  The soil P transformation process varied with soil layer and fertilization.  Application of manure fertilizer can increase the labile (Olsen) P concentrations of the various soil layers, and thus should reduce the mineral P fertilizer requirement for crop growth and reduce potential environmental damage

Reference | Related Articles | Metrics
Carbon and nitrogen allocations in corn grown in Central and Northeast China: different responses to fertilization treatments
MIAO Hui-tian, Lü Jia-long, XU Ming-gang, ZHANG Wen-ju, HUANG Shao-min, PENG Chang, CHEN Li-ming
2015, 14 (6): 1212-1221.   DOI: 10.1016/S2095-3119(14)60790-5
Abstract2033)      PDF in ScienceDirect      
In order to reveal the impact of various fertilization strategies on carbon (C) and nitrogen (N) accumulation and allocation in corn (Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China (Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer (control), chemical fertilizers of either nitrogen (N), or nitrogen and phosphorus (NP), or phosphorus and potassium (PK), or nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM), 150% of the NPKM (1.5NPKM), and NPK plus straw (NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha–1 in the control treatment to 9 300–9 610 kg ha–1 in the NPKM treatment, of which 57–67% and 43–50% were allocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha–1 in the control treatment to 211–222 kg ha–1 in the NPKM treatment, of which 35–48% and 33–44% were allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area.
Reference | Related Articles | Metrics
Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China
SHEN Pu, HE Xin-hua, XU Ming-gang, ZHANG Hui-min, PENG Chang, GAO Hong-jun, LIU
2014, 13 (3): 597-603.   DOI: 10.1016/S2095-3119(13)60717-0
Abstract1599)      PDF in ScienceDirect      
Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 11th to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 11th to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r2=0.55-0.79, P<0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.
Reference | Related Articles | Metrics