Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field
DENG Jun-cai, LI Xiao-man, XIAO Xin-li, WU Hai-jun, YANG Cai-qiong, LONG Xi-yang, ZHANG Qi-hui, Nasir Iqbal, WANG Xiao-chun, YONG Tai-wen, DU Jun-bo, YANG Feng, LIU Wei-guo, ZHANG Jing, WU Xiao-ling, WU Yu-shan, YANG Wen-yu, LIU Jiang
2022, 21 (2): 336-350.   DOI: 10.1016/S2095-3119(20)63594-8
Abstract204)      PDF in ScienceDirect      
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold (FM) stress.  If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality.  To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed.  The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome.  The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide.  Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress.  These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids.  Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality.  In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field.  This study provides a more profound insight into seed deterioration caused by FM stress.
Reference | Related Articles | Metrics
Crop photosynthetic response to light quality and light intensity
Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng
2021, 20 (1): 4-23.   DOI: 10.1016/S2095-3119(20)63227-0
Abstract193)      PDF in ScienceDirect      
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity.  Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth.  The two components of light (light quality and light intensity) greatly affect plant photosynthesis and other plant’s morphological, physiological and biochemical parameters.  The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions.  To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development.  This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species (ROS) production, antioxidants, and hormone production.
 
Reference | Related Articles | Metrics
Weak stem under shade reveals the lignin reduction behavior
Sajad Hussain, Nasir Iqbal, PANG Ting, Muhammad Naeem Khan, LIU Wei-guo, YANG Wen-yu
2019, 18 (3): 493-505.   DOI: 10.1016/S2095-3119(18)62111-2
Abstract204)      PDF (712KB)(181)      
Shades caused by neighboring tall plants in intercropping systems and weak sunlight are constraints in yield optimization.  Shade influences many aspects of plant growth and development, leading to weak stems and susceptibility to lodging.  The plant cell wall is composed of certain proteins that allow the walls to stretch out, a process called cell wall loosening.  Shade affects anatomical, morphological, and physiological traits of plants, thus reducing the physical strength of the stem in crops by changing the loosening of cell walls.  Flexibility of cells facilitates further modifications such as wall loosening.  In addition, shade stress causes increased internode length, and reduced xylem synthesis and photosynthesis.  In shaded plants, lignin deposition in vascular bundles and sclerenchyma cells of stems is decreased.  Lignin is a light sensitive phenolic compound and shading decreases the transcript abundance of several phenolic compound (flavone and lignin) related genes.  Shading significantly influences the metabolic activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD), 4-coumarate: CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD) involved in lignin biosynthesis.  Furthermore, suppression of lignin biosynthesis activities by abiotic stresses causes abnormal phenotypes such as collapsed xylem, bent stems, and growth retardation.  In this review, the underlying mechanisms illustrate that under shading conditions reduced lignin content results in slender, weak, and unstable stems.  The objective of this review is to elaborate lignin biosynthesis and its variability under stressful environmental conditions, especially in shade stress environments.  The effects of shade on stem lignin metabolism are discussed on the morphogenetic, physiological, and proteomic levels.
 
Reference | Related Articles | Metrics