Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea
Na Chang, Xiaotian Pi, Ziwen Zhou, Yeyun Li, Xianchen Zhang
2024, 23 (11): 3737-3750.   DOI: 10.1016/j.jia.2024.04.002
Abstract90)      PDF in ScienceDirect      
The growth and yield of tea plants are seriously limited by drought stress.  Fatty acid desaturases (FADs) contribute to the mediation of membrane fluidity in response to different stresses, although the role of ω-3 FAD (Omega-3 fatty acid desaturase)-mediated damage induced by drought stress in tea plants is poorly understood.  In this study, drought stress significantly promoted the synthesis of C18:3 (linolenic acid) and the expression level of CsFAD3.  Yeast experiments further demonstrated that CsFAD3 can convert C18:2 to C18:3, and that the 35S:GFP-CsFAD3 fusion protein was localized in the endoplasmic reticulum of Nicotiana benthamiana cells.  CsFAD3-silenced tea leaves exhibited poor drought tolerance, with a lower Fv/Fm and a higher malondialdehyde (MDA) content than the control plants.  However, transgenic 35S:CsFAD3 Arabidopsis plants showed the opposite phenotypes.  In addition, the jasmonic acid (JA) content and the expression levels of CsLOX2, CsLOX4, CsAOS, CsAOC3 and CsOPR2 were significantly reduced in CsFAD3-silenced leaves under drought stress.  However, no substantial difference in the salicylic acid (SA) content was detected under normal or drought conditions.  An analysis of Atcoi1 (JA receptor) or Atnpr1 (SA receptor) mutant Arabidopsis plants in 35S:CsFAD3 backgrounds further revealed that knockout of Atcoi1 impaired the drought-tolerant phenotypes of CsFAD3 overexpression lines.  Therefore, this study demonstrated that CsFAD3 plays a crucial role in drought tolerance by mediating JA pathways.


Reference | Related Articles | Metrics
Maize-green manure intercropping improves maize yield and P uptake by shaping the responses of roots and soil
Xin Zhao, Hai Liang, Danna Chang, Jiudong Zhang, Xingguo Bao, Heng Cui, Weidong Cao
DOI: 10.1016/j.jia.2025.02.051 Online: 25 February 2025
Abstract22)      PDF in ScienceDirect      

Green manuring is essential for improving soil quality and nutrient uptake. With the gradual depletion of phosphorus (P) resources, more attention is being paid to the role of green manures in cultivation systems, such as maize-green manure intercropping, to find possible pathways for enhancing soil P utilization. A maize-green manure intercropping experiment was started in 2009 to investigate the effects and mechanisms for enhancing P uptake and yield in maize. Three species of green manures (HV: hairy vetch; NP: needle leaf pea; SP: sweet pea) and a sole maize treatment (CK) were used, resulting in four treatments (CK, HVT, NPT, and SPT) in the experiment. During 2020-2023, the intercropping treatments enhanced maize yields in 2020 and 2021, particularly in the HVT treatment with increases of 13.7% (1.96 t ha-1) and 13.0% (2.13 t ha-1) compared with CK, respectively. Grain P accumulation of maize was significantly higher in the intercropping treatments than CK in 2020, 2021, and 2023, and with an average increase of 10.6% over the four years (5.2% for NPT, 10.8% for SPT and 15.9% for HVT) compared with CK. Intercropping promoted maize growth with a greater root length density and a higher organic acid release rate. HVT changed the soil properties more dramatically than the other treatments, with increases in the acid phosphatase and alkaline phosphatase activities of 29.8 and 38.5%, respectively, in the topsoil (0-15 cm), while the soil pH was reduced by 0.37 units compared to CK (pH=8.44). Intercropping treatments facilitated the conversion of non-labile P to mod-labile P and stimulated the growth of soil bacteria in the topsoil. Compared with CK, the relative abundance of Gemmatimonadota, known for accumulating polyphosphate, and Actinobacteriota, a prominent source of bioactive compounds, increased significantly in the intercropping treatments, especially in HVT and SPT. A PLS-PM analysis showed that intercropping promoted soil P mobilization and the enrichment of beneficial bacteria by regulating maize root morphology and physiology. Our results highlight that maize-green manure intercropping optimizes root traits, soil properties and bacterial composition, which contribute to greater maize P uptake and yield, providing an effective strategy for sustainable crop production.  

Reference | Related Articles | Metrics