Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan
Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie
2023, 22 (5): 1514-1528.   DOI: 10.1016/j.jia.2022.10.004
Abstract242)      PDF in ScienceDirect      

Streptococcus agalactiae is one of the most common pathogens that cause bovine mastitis worldwide. Identifying pathogen prevalence and virulence factors is critical for developing prevention and control approaches. Herein, 1161 milk samples from various dairy farms in China (n=558) and Pakistan (n=603) were collected between 2019-2021 and were subjected to S. agalactiae isolation. Prevalence, serotyping, virulence genes, and antibiotic-resistant genes of S. agalactiae were evaluated by PCR assay. All isolates were characterized for haemolysis, biofilm production, cytotoxicity, adhesion, and invasion on bovine mammary epithelial cells. The prevalence of S. agalactiae-induced mastitis in cattle was found to be considerably higher in Pakistan than in China. Jiangsu and Sindh provinces had the highest area-wise prevalence in China and Pakistan, respectively. Serotypes Ia and II were prevalent in both countries, whereas serotype III was found only in Pakistan. Moreover, all isolates tested positive for PI-2b gene but negative for PI-1 and PI-2a genes. All isolates harboured cfb, cylE, hylB, and fbsB virulent genes, whereas many of them lacked bibA, rib and bca. However, the absence of bac and scp genes in Chinese isolates and cspA in Pakistani isolates was noted, while spb1 and lmb were not detected in isolates of both countries. Pakistani isolates, particularly serotype Ia-positive, had a considerably higher ability to produce biofilm, haemolysis, cytotoxicity, adhesion, and invasion than Chinese isolates. Most of the isolates were phenotypically resistant to tetracycline, erythromycin, and clindamycin and genotypic resistance was confirmed by the presence of ermA, ermB, tetM and tetO genes. Our study highlights the antimicrobial resistance profile and virulence-related factors contributing to the epidemiological spread of mastitis-causing S. agalactiae in China and Pakistan. The findings may facilitate future studies designed to develop improved treatment and control strategies against this pathogen. 

Reference | Related Articles | Metrics
Response of leaf stomatal and mesophyll conductance to abiotic stress factors
LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng
2022, 21 (10): 2787-2804.   DOI: 10.1016/j.jia.2022.07.036
Abstract264)      PDF in ScienceDirect      

Plant photosynthesis assimilates CO2 from the atmosphere, and CO2 diffusion efficiency is mainly constrained by stomatal and mesophyll resistance.  The stomatal and mesophyll conductance of plants are sensitive to abiotic stress factors, which affect the CO2 concentrations at carboxylation sites to control photosynthetic rates.  Early studies conducted relevant reviews on the responses of stomatal conductance to the environment and the limitations of mesophyll conductance by internal structure and biochemical factors.  However, reviews on the abiotic stress factors that systematically regulate plant CO2 diffusion are rare.  Therefore, in this review, the rapid and long-term responses of stomatal and mesophyll conductance to abiotic stress factors (such as light intensity, drought, CO2 concentration and temperature) and their physiological mechanisms are summarized.  Finally, future research trends are also investigated.

Reference | Related Articles | Metrics
Crop photosynthetic response to light quality and light intensity
Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng
2021, 20 (1): 4-23.   DOI: 10.1016/S2095-3119(20)63227-0
Abstract193)      PDF in ScienceDirect      
Under natural conditions, plants constantly encounter various biotic and abiotic factors, which can potentially restrict plant growth and development and even limit crop productivity.  Among various abiotic factors affecting plant photosynthesis, light serves as an important factor that drives carbon metabolism in plants and supports life on earth.  The two components of light (light quality and light intensity) greatly affect plant photosynthesis and other plant’s morphological, physiological and biochemical parameters.  The response of plants to different spectral radiations and intensities differs in various species and also depends on growing conditions.  To date, much research has been conducted regarding how different spectral radiations of varying intensity can affect plant growth and development.  This review is an effort to briefly summarize the available information on the effects of light components on various plant parameters such as stem and leaf morphology and anatomy, stomatal development, photosynthetic apparatus, pigment composition, reactive oxygen species (ROS) production, antioxidants, and hormone production.
 
Reference | Related Articles | Metrics
Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.)
Muhammad Ali, CHENG Zhi-hui, Sikandar Hayat, Husain Ahmad, Muhammad Imran Ghani, LIU Tao
2019, 18 (5): 1001-1013.   DOI: 10.1016/S2095-3119(18)62129-X
Abstract229)      PDF in ScienceDirect      
Recently, botanical extracts are gaining popularity as biostimulants in vegetable production.  In present study, the effect of aqueous garlic bulb extract (AGE) was studied on the growth and physiology of eggplant grown in plastic tunnel.  AGE was foliage sprayed with various frequencies, i.e., 0, S1 (once), S2 (twice) and S3 (three times) at two independent growth stages, pre- and post-transplant.  The results showed that the treated plants exhibited stimulatory responses in growth and physiology in accord with the repetition of AGE spray and growth stages of the plants, respectively.  A single foliage sprayed pre-transplant resulted in improved growth, i.e., plant morphology and biomass, and enhanced antioxidants enzymes (superoxide dismutase, SOD; peroxidase, POD), photosynthesis and chlorophyll abundance observed at vegetative, first flowering and fruit setting stages, respectively.  However, thrice application inhibited the plant growth and development and resulted in lipid peroxidation, i.e., increased malondialdehyde (MDA) content.  In addition, the post-transplant application also showed growth stimulation and interestingly, an overall positive influence was observed with respect to the AGE application and no significant increase in the MDA content indicated the post-transplant seedlings responded well.  Our findings demonstrate that AGE can act as a biostimulant to enhance the eggplant growth in plastic tunnel production.
Reference | Related Articles | Metrics
Genetic variation in LBL1 contributes to depth of leaf blades lobes between cotton subspecies, Gossypium barbadense and Gossypium hirsutum
HE Dao-fang, ZHAO Xiang, LIANG Cheng-zhen, ZHU Tao, Muhammad Ali Abid, CAI Yong-ping, HE Jin-ling, ZHANG Rui
2018, 17 (11): 2394-2404.   DOI: 10.1016/S2095-3119(18)61954-9
Abstract374)      PDF in ScienceDirect      
Leaf is a essential part of the plants for photosynthetic activities which mainly economize the resources for boll heath.  Significant variations of leaf shapes across the Gossypium sp. considerably influence the infiltration of sunlight for photosynthesis.  To understand the genetic variants and molecular processes underlying for cotton leaf shape, we used F2 population derived from upland cotton genotype P30A (shallow-lobed leaf) and sea-island cotton genotype ISR (deep-lobed leaf) to map leaf deep lobed phenotype controlling genes LBL1 and LBL2.  Genetic analysis and localization results have unmasked the position and interaction between both loci of LBL1 and LBL2, and revealed the co-dominance impact of the genes in regulating depth of leaf blades lobes in cotton.  LBL1 had been described as a main gene and member of transcription factor family leucine zipper (HD-ZIPI) from a class I homologous domain factor Gorai.002G244000.  The qRT-PCR results elaborated the continuous change in expression level of LBL1 at different growth stages and leaf parts of cotton.  Higher expression level was observed in mature large leaves followed by medium and young leaves respectively.  For further confirmation, plants were tested from hormonal induction treatments, which explained that LBL1 expression was influenced by hormonal signaling.  Moreover, the highest expression level was detected in brassinolides (BR) treatment as compared to other hormones, and this hormone plays an important role in the process of leaf blade lobed formation.
Reference | Related Articles | Metrics