Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Development and characterization of new allohexaploid resistant to web blotch in peanut
WANG Si-yu, LI Li-na, FU Liu-yang, LIU Hua, QIN Li, CUI Cai-hong, MIAO Li-juan, ZHANG Zhong-xin, GAO Wei, DONG Wen-zhao, HUANG Bing-yan, ZHENG Zheng, TANG Feng-shou, ZHANG Xin-you, DU Pei
2021, 20 (1): 55-64.   DOI: 10.1016/S2095-3119(20)63228-2
Abstract101)      PDF in ScienceDirect      
Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem.  In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong (Slh) cultivar with Arachis duranensis (ZW55), a diploid wild species.  Seedlings were generated by embryo rescue and tissue culture.  A true interspecific hybrid was then confirmed by cytological methods and molecular markers.  After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210.  With oligonucleotide fluorescence in situ hybridization (Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55; 2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats; 3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis.  In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.
 
Reference | Related Articles | Metrics
Identification of oil content QTL on Arahy12 and Arahy16 and development of KASP markers in cultivated peanut (Arachis hypogaea L.)
HUANG Bing-yan, LIU Hua, FANG Yuan-jin, MIAO Li-juan, QIN Li, SUN Zi-qi, QI Fei-yan, CHEN Lei, ZHANG Feng-ye, LI Shuan-zhu, ZHENG Qing-huan, SHI Lei, WU Ji-hua, DONG Wen-zhao, ZHANG Xin-you
DOI: 10.1016/j.jia.2023.11.010 Online: 10 November 2023
Abstract74)      PDF in ScienceDirect      

Peanut kernels rich in oil, particularly those with oleic acid as their primary fatty acid, are sought after by consumers, the food industry, and farmers due to their superior nutritional content, extended shelf life, and health benefits.  The oil content and fatty acid composition are governed by multiple genetic factors.  Identifying the quantitative trait loci (QTL) related to these attributes would facilitate marker-assisted selection or genomic selection, thus enhancing the quality-focused peanut breeding program.  For this purpose, we developed a population of 521 recombinant inbred lines (RIL) and tested their kernel quality traits across five different environments. We identified two major and stable QTLs for oil content (qOCAh12.1 and qOCAh16.1).  The markers linked to these QTLs were designed by competitive allele-specific PCR (KASP) and were subsequently validated.  Moreover, we found that the superior haplotype of oil content in the qOCAh16.1 region was conserved within the PI germplasm cluster, as evidenced by a diverse peanut accession panel.  In addition, we determined that qAh09 and qAh19.1, which harbor the key gene encoding fatty acid desaturase 2 (FAD2), influence all seven fatty acids, including palmitic, stearic, oleic, linoleic, arachidic, gadoleic, and behenic acids.  As for protein content and the long-chain saturated fatty acid behenic acid, qAh07 emerged as the major and stable QTLs, accounting for over 10% of the phenotypic variation explained (PVE).  These findings would enhance marker-assisted selection in peanut breeding, aiming to improve oil content, and deepen our understanding of the genetic mechanisms that shape fatty acid composition. 

Reference | Related Articles | Metrics