Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Chromosome-level genome assembly of Cylas formicarius provides insights into its adaptation and invasion mechanisms
HUA Jin-feng, ZHANG Lei, HAN Yong-hua, GOU Xiao-wan, CHEN Tian-yuan, HUANG Yong-mei, LI Yan-qing, MA Dai-fu, LI Zong-yun
2023, 22 (3): 825-843.   DOI: 10.1016/j.jia.2022.08.027
Abstract265)      PDF in ScienceDirect      

Cylas formicarius is one of the most important pests of sweet potato worldwide, causing considerable ecological and economic damage.  This study improved the effect of comprehensive management and understanding of genetic mechanisms by examining the functional genomics of Cformicarius.  Using Illumina and PacBio sequencing, this study obtained a chromosome-level genome assembly of adult weevils from lines inbred for 15 generations.  The high-quality assembly obtained was 338.84 Mb, with contig and scaffold N50 values of 14.97 and 34.23 Mb, respectively.  In total, 157.51 Mb of repeat sequences and 11 907 protein-coding genes were predicted.  A total of 337.06 Mb of genomic sequences was located on the 11 chromosomes, accounting for 99.03% of the total length of the associated chromosome.  Comparative genomic analysis showed that Cformicarius was sister to Dendroctonus ponderosae, and Cformicarius diverged from Dponderosae approximately 138.89 million years ago (Mya).  Many important gene families expanded in the Cformicarius genome were involved in the detoxification of pesticides, tolerance to cold stress and chemosensory system.  To further study the role of odorant-binding proteins (OBPs) in olfactory recognition of Cformicarius, the binding assay results indicated that CforOBP4–6 had strong binding affinities for sex pheromones and other ligands.  The high-quality Cformicarius genome provides a valuable resource to reveal the molecular ecological basis, genetic mechanism, and evolutionary process of major agricultural pests; it also offers new ideas and new technologies for ecologically sustainable pest control.

Reference | Related Articles | Metrics
Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae
PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang
2017, 16 (10): 2168-2176.   DOI: 10.1016/S2095-3119(16)61570-8
Abstract738)      PDF in ScienceDirect      
Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L–1 NaCl stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L–1 NaCl stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na+). Yeast complementation assay showed that IbHKT1 could take up K+ in 50 mmol L–1 K+ medium without the presence of NaCl. Moreover, Na+ uptake significantly increased in yeast overexpressing IbHKT1. These results showed that IbHKT1 transporter could have K+-Na+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.
Reference | Related Articles | Metrics
Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato
KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu
2017, 16 (02): 464-470.   DOI: 10.1016/S2095-3119(16)61405-3
Abstract1224)      PDF in ScienceDirect      
The information of single nucleotide polymorphisms (SNPs) is quite unknown in sweetpotato.  In this study, two sweetpotato varieties (Xushu 18 and Xu 781) were sequenced by Illumina technology, as well as de novo transcriptome assembly, functional annotation, and in silico discovery of potential SNP molecular markers.  Tetra-primer Amplification Refractory Mutation System PCR (ARMS-PCR) is a simple and sufficient method for detecting different alleles in SNP locus.  Total 153 sets of ARMS-PCR primers were designed to validate the putative SNPs from sequences.  PCR products from 103 sets of primers were different between Xu 781 and Xushu 18 via agarose gel electrophoresis, and the detection rate was 67.32%.  We obtained the expected results from 32 sets of primers between the two genotypes.  Furthermore, we ascertained the optimal annealing temperature of 32 sets of primers.  These SNPs might be used in genotyping, QTL mapping, or marker-assisted trait selection further in sweetpotato.  To our knowledge, this work was the first study to develop SNP markers in sweetpotato by using tetra-primer ARMS-PCR technique.  This method was a simple, rapid, and useful technique to develop SNP markers, and will provide a potential and preliminary application in discriminating cultivars in sweetpotato.
Reference | Related Articles | Metrics
Development of SRAP Markers Linked to a Gene for Stem Nematode Resistance in Sweetpotato, Ipomoea batatas (L.) Lam.
ZHAO Ning, ZHAI Hong, YU Xiao-xia, LIU Zhe-sheng, HE Shao-zhen, LI Qiang, MA Dai-fu , LIU Qing-chang
2013, 12 (3): 414-419.   DOI: 10.1016/S2095-3119(13)60241-5
Abstract1554)      PDF in ScienceDirect      
Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, Ipomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP primer combinations were screened with the resistant and susceptible bulked DNA from the 196 progenies of an F1 single-cross population of resistant parent Xu 781×susceptible parent Xushu 18, 77 of them showed polymorphic bands between resistant and susceptible DNA. Primer combinations detecting polymorphism between the two bulks were used to screen both parents and 10 individuals from each of the bulks. The results showed that primer combination A9B4 produced 3 specific bands in the resistant plants but not in the susceptible plants, suggesting that the markers, named Nsp1, Nsp2 and Nsp3, respectively, linked to a gene for stem nematode resistance. Primer combination A3B6 also produced a SRAP marker named Nsp4 linking to the resistance gene. Amplified analysis of the 196 F1 individuals indicated that the genetic distance between these markers and the resistance gene was 4.7, 4.7, 6.3, and 9.6 cM, respectively.
Reference | Related Articles | Metrics