The fine-tuned expression dynamics of the effector genes are pivotal for the transition from vegetative growth to host colonization of pathogenic filamentous fungi. However, mechanisms underlying the dynamic regulation of these genes remain largely unknown. Here, through comparative transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of the methyltransferase PoKmt6 in rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae), we found that PoKmt6-mediated H3K27me3 deposition was enriched mainly at fast-evolving regions and contributed to the silencing of a subset of secreted proteins (SP) and transposable element (TE) families during the vegetative growth of P. oryzae. Intriguingly, we observed that a group of SP genes, which were depleted of H3K27me3 modification, could also be silenced via the H3K27me3-mediated repression of the nearby TEs. In conclusion, our results indicate that H3K27me3 modification mediated by PoKmt6 regulates the expression of some SP genes in fast-evolving regions through the suppression of nearby TEs.
The peroxisomal matrix oxidase, catalase and peroxidase are imported peroxisomes through the shuttling receptors, which regulates the cellular oxidative homeostasis and function. Here, we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1, utilization of carbon sources and lipids, elimination ROS, cell wall stress, conidiation, fumonisin B1 (FB1) production, and virulence in maize pathogen Fusarium verticillioides. Significantly, differential expression of PTS1-, PTS2-, PEX- and FB1 toxin-related genes in wild type and ΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay. In addition, different expression of PTS1 and PTS2 genes of the ΔFvpex5 mutant were enriched in diverse biochemical pathways, such as carbon metabolism, nitrogen metabolism, lipid metabolism and the oxidation balance by combining GO and KEGG annotations. Overall, we showed that FvPex5 is involved in the regulation of genes associated with PTS, thereby affecting the oxidation balance, FB1 and virulence in F. verticillioides. The results help to clarify the functional divergence of Pex5 orthologs, and may provide a possible target for controlling F. verticillioides infections and FB1 biosynthesis.