Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Histone H3K27me3 methylation regulates the expression of secreted proteins distributed at fast-evolving regions through transcriptional repression of transposable elements
XIE Jia-hui, TANG Wei, LU Guo-dong, HONG Yong-he, ZHONG Zhen-hui, WANG Zong-hua, ZHENG Hua-kun
2023, 22 (10): 3059-3068.   DOI: 10.1016/j.jia.2023.01.011
Abstract228)      PDF in ScienceDirect      

The fine-tuned expression dynamics of the effector genes are pivotal for the transition from vegetative growth to host colonization of pathogenic filamentous fungi.  However, mechanisms underlying the dynamic regulation of these genes remain largely unknown.  Here, through comparative transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of the methyltransferase PoKmt6 in rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae), we found that PoKmt6-mediated H3K27me3 deposition was enriched mainly at fast-evolving regions and contributed to the silencing of a subset of secreted proteins (SP) and transposable element (TE) families during the vegetative growth of Poryzae.  Intriguingly, we observed that a group of SP genes, which were depleted of H3K27me3 modification, could also be silenced via the H3K27me3-mediated repression of the nearby TEs.  In conclusion, our results indicate that H3K27me3 modification mediated by PoKmt6 regulates the expression of some SP genes in fast-evolving regions through the suppression of nearby TEs.

Reference | Related Articles | Metrics
The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides
YU Wen-ying, LIN Mei, YAN Hui-juan, WANG Jia-jia, ZHANG Sheng-min, LU Guo-dong, WANG Zong-hua, Won-Bo SHIM
2022, 21 (10): 2957-2972.   DOI: 10.1016/j.jia.2022.07.044
Abstract234)      PDF in ScienceDirect      

The peroxisomal matrix oxidase, catalase and peroxidase are imported peroxisomes through the shuttling receptors, which regulates the cellular oxidative homeostasis and function.  Here, we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1, utilization of carbon sources and lipids, elimination ROS, cell wall stress, conidiation, fumonisin B1 (FB1) production, and virulence in maize pathogen Fusarium verticillioides.  Significantly, differential expression of PTS1-, PTS2-, PEX- and FB1 toxin-related genes in wild type and ΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.  In addition, different expression of PTS1 and PTS2 genes of the ΔFvpex5 mutant were enriched in diverse biochemical pathways, such as carbon metabolism, nitrogen metabolism, lipid metabolism and the oxidation balance by combining GO and KEGG annotations.  Overall, we showed that FvPex5 is involved in the regulation of genes associated with PTS, thereby affecting the oxidation balance, FB1 and virulence in Fverticillioides.  The results help to clarify the functional divergence of Pex5 orthologs, and may provide a possible target for controlling Fverticillioides infections and FB1 biosynthesis.

Reference | Related Articles | Metrics
The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus
ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun
2021, 20 (11): 2944-2956.   DOI: 10.1016/S2095-3119(20)63493-1
Abstract103)      PDF in ScienceDirect      
 
Autophagy is responsible for maintaining fundamental cellular homeostasis and is, therefore, essential for diverse development processes.  This study reported that PoElp3, the putative catalytic subunit of Elongator complex, is involved in the maintenance of autophagy homeostasis to facilitate asexual development and pathogenicity in the rice blast fungus Pyricularia oryzae.  It was found that the ΔPoelp3 strains were defective in vegetative growth, conidiation, stress response, and pathogenicity.  The mutants exhibited hyper-activated autophagy in the vegetative hyphae under both nutrient-rich and nutrient-deficient conditions.  The hyper-activation of autophagy possibly suppressed the production of vegetative hyphae in the ΔPoelp3 strains.  Moreover, the ΔPoelp3 strains were found to be more sensitive to rapamycin during vegetative- and invasive-hyphal growth but have no effect on Target-of-Rapamycin (TOR) signaling inhibition.  Taken together, these results demonstrated that PoElp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus. 
 
Reference | Related Articles | Metrics
Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae
HAN Yi-juan, ZHONG Zhen-hui, SONG Lin-lin, Olsson Stefan, WANG Zong-hua, LU Guo-dong
2018, 17 (06): 1252-1267.   DOI: 10.1016/S2095-3119(17)61809-4
Abstract482)      PDF in ScienceDirect      
Jacalin-related lectins (JRLs) are widely distributed carbohydrate-binding proteins in the plant kingdom, which play key roles in development and pathogen defense.  In this study, we profiled evolutionary trajectory of JRLs family in 30 plant species and identified domain diversification and recombination leading to different responsive patterns of JRLs in rice during defense against rice blast.  All of 30 plant species analyzed in our study have two types of JRLs by containing either a single jacalin or repeated jacalin domains, while chimeric jacalins exist in more than half of the species, especially in the Poaceae family.  Moreover, Poaceae species have evolved two types of unique chimeric JRLs by fusing the jacalin domain(s) with dirigent or NB_ARC domain, some of which positively regulate plant immunity.  Seven Poaceae-specific JRLs are found in the rice genome.  We further found expression of rice JRLs, including four Poaceae-specific JRLs, are induced by Magnaporthe oryzae infections at either early or late infection stages.  Overall, the results present the evolutionary trajectory of JRLs in plant and highlight essential roles of Poaceae specific JRLs against pathogen attacks in rice.
Reference | Related Articles | Metrics
Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines
ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong
2017, 16 (10): 2222-2230.   DOI: 10.1016/S2095-3119(16)61607-6
Abstract693)      PDF in ScienceDirect      
Genome dynamics of pathogenic organisms are driven by plant host and pathogenic organism co-evolution, in which pathogen genomes are used to overcome stresses imposed by hosts with various genetic backgrounds through generation of a range of field isolates.  This model also applies to the rice host and its fungal pathogen Magnaporthe oryzae.  To better understand genetic variation of M. oryzae in nature, the field isolate V86010 from the Philippines was sequenced and analyzed.  Genome annotation found that the assembled V86010 genome was composed of 1 931 scaffolds with a combined length of 38.9 Mb.  The average GC ratio is 51.3% and repetitive elements constitute 5.1% of the genome.  A total of 11 857 genes including 616 effector protein genes were predicted using a combined analysis pipeline.  All predicted genes and effector protein genes of isolate V86010 distribute on the eight chromosomes when aligned with the assembled genome of isolate 70-15.  Effector protein genes are located disproportionately at several chromosomal ends.  The Pot2 elements are abundant in V86010.  Seven V86010-specific effector proteins were found to suppress programmed cell death induced by BAX in tobacco leaves using an Agrobacterium-mediated transient assay.  Our results may provide useful information for further study of the molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions, and for characterizing novel effectors and AVR genes in the rice blast pathogen.  
Reference | Related Articles | Metrics
Magnaporthe Rab5 homologs show distinct functions in nerve growth factor (NGF)-mediated neurite outgrowth and cell differentiation
QI Yao-yao, LIANG Zhi-min, ZHOU Jie, WANG Zong-hua, LU Guo-dong, LI Guang-pu
2015, 14 (5): 823-829.   DOI: 10.1016/S2095-3119(14)60972-2
Abstract1969)      PDF in ScienceDirect      
Nerve growth factor (NGF) binds to TrkA and forms a NGF/TrkA complex at the cell surface, which is then internalized into signaling endosomes and promotes neuronal survival and neurite outgrowth. The small GTPase Rab5 is reported to localize on the plasma membrane and early endosomes, regulating endosome fusion. It was reported that endogenous Rab5 function may need to be suppressed during NGF-induced neurite outgrowth and cell differentiation. Two Rab5 homologs (MoRab5A: MGG_06241 and MoRab5B:MGG_01185) were characterized from the rice blast fungus Magnaporthe oryzae, and MoRab5B was identified as the Rab5 ortholog promoting early endosomal fusion, while MoRab5A specialized to perform a non-redundant function in endosomal sorting. In this study, we examined whether MoRab5A and MoRab5B play different roles in NGF-induced neurite outgrowth and cell differentiation in PC12 cells (a rat pheochromocytoma cell line). Our data showed that MoRab5B is a negative regulator of NGF signaling and neurite outgrowth in PC12 cells, similar to human Rab5 (hRab5). MoRab5B:WT inhibits NGF signaling-dependent neurite outgrowth while the dominant-negative MoRab5B mutant (MoRab5B:DN) enhances NGF signaling and neurite outgrowth. In contrast, MoRab5A:WT and MoRab5A:DN both significantly promote NGF-induced neurite outgrowth, indicating that MoRab5B is more similar to hRab5 than MoRab5A in the regulation of NGF signal transduction.
Reference | Related Articles | Metrics