Mitochondria influence plant growth, fertility, and adaptation. Sugarcane (Saccharum hybrids) is the most important sugar and energy crop worldwide, and S. spontaneum and S. arundinaceum are excellent parental germplasm. However, few studies have been conducted on the mitochondrial genomes of sugarcane and related species. In this study, the mitogenomes of one S. arundinaceum, one S. spontaneum, and five sugarcane cultivars were assembled. The results showed that the sizes of these mitogenomes, encoding 33 protein-coding genes (PCGs), were between 445,578 and 533,662 bp, with a GC content of 43.43%-43.82%. The major structures of S. arundinaceum comprised three small rings, S. spontaneum had one ring and one linear structure, and sugarcane had two rings; there were multiple potential conformations due to repeat-mediated recombination. Furthermore, we developed an intron marker SAnad4i3 that can distinguish these species. Between 540 and 581 and from C to U RNA editing sites were identified in the PCGs, with six RNA editing sites were associated with the creation of start or stop codons in S. arundinaceum, and five sites each in S. spontaneum and the sugarcane hybrids were observed. Notably, 30-37 fragments homologous to chloroplast DNA were identified, with the highest number found in S. spontaneum. During evolution, these mitogenomes may have undergone multiple genomic reorganization and gene transfer events and lost eight PCGs. Collectively, this study reveals the genetic diversity and complexity of the Saccharum complex by providing a scientific basis for further germplasm identification and evolutionary research.